A Voltage Monitoring IC With HV Multiplexer and HV Transceiver for Battery Management Systems

Chih-Lin Chen, Student Member, IEEE, Deng-Shian Wang, Jie-Jyun Li, and Chua-Chin Wang, Senior Member, IEEE

Abstract—This paper presents a voltage monitoring IC with high-voltage multiplexer (HVMUX) and HV transceiver for battery interconnect module (BIM) used in battery management systems (BMSs). The voltage monitoring IC must be able to accommodate input voltage up to tens of volts, perhaps even hundreds of volts, which is difficult to be realized using a logic-based solution. To realize a solution on silicon, the voltage monitoring IC shall be fabricated using an advanced HV semiconductor process, which usually is constrained by the voltage drop limitation between gate and source of HV devices. To overcome such a limitation, an HV switch is proposed in this paper, including an HV gate voltage driver (HVGVD) driving the HV MOS without any over-voltage hazard. In addition, an HV transceiver is proposed using CMOS transistors without any isolator. An experimental prototype is fabricated using a typical 0.25 μm 1-poly 3-metal 60 V BCD process. The measurement results reveal that the error and off-isolation of HVMUX is less than 2.54% and −92 dB@1 MHz, respectively. Meanwhile, the HV transceiver can transmit and receive data with a −32 ∼ +32 V common voltage.

Index Terms—Analog high-voltage multiplexer (HVMUX), battery management system (BMS), high voltage (HV), high voltage transceiver.

I. INTRODUCTION

HIGH-VOLTAGE (HV) battery management system (BMS) is widely needed in many applications, e.g., electric vehicle and hybrid electric vehicle, where many battery modules are assembled and integrated. One of the popular BMS architectures is the modular formation, i.e., a module monitors several batteries with a daisy-chain interface. For example, a distributed BMS is composed of at least five blocks, including battery interconnect modules (BIM), main...
BMS designs. An integrated HVMUX was fabricated with a 0.35 \mu m 50-V CMOS process [8], where a large floating gate drive voltage in the HV switch (≈15 V) was generated directly due to the voltage drop over the resistor. Therefore, it could result in a leakage current flowing into the output and causing large voltage distortion. A 16:1 analog MUX was revealed using a combination of process (CMOS/SOI) techniques [9], where 5-V CMOS logic circuits are shifted up to ±15 V to drive HV analog switches. Referring to technology considerations for automotives [10], the SOI technology is not welcomed for power devices, since the thermal conductivity of the oxide is very low. In addition, the SOI technology is quite expensive and the integration is not very easy and straightforward, e.g., vertical components and ESD protection cells.

Another critical issue in the BMS is to the data communication among BIMs by HV transceivers or digital isolators. They are usually implemented by discrete devices, e.g., optocoupler, magnetic isolator, and capacitive isolator. Several HV transceivers or digital isolators have been reported [3], [4], [11]–[16]. An optical coupler is used to isolate and communicate between HV and LV systems [3], [4]. The disadvantages of optical couplers are high power consumption, poor integration, low speed, and degradation of light emitting diode (LED). Digital isolators using magnetic coupling [11]–[13] or capacitive coupling [14], [15] methods were proposed. However, no matter magnetic or capacitive coupling transmissions, they will generate electromagnetic interference (EMI) effect to jam other circuits or be corrupted by external wireless signals to endanger the reliability. In addition, they usually use a lot of discrete components, i.e., transformer and capacitor. Therefore, it is not easily integrated in system-on-chip (SoC) designs. A wireless battery monitor was also proposed [16]. However, it is not cost effective to realize a large scale battery system because it needs a lot of wireless modules. In other words, the cost and area efficiency will be problems.

Recently, many advanced semiconductor processes have been proposed to fabricate HV devices on silicon, e.g., TSMC 0.25 \mu m 1-poly 3-metal 60-V BCD process [17], [18]. This particular process offers digital cell library, LV MOSs driven by 2.5 V/5 V, and several types of HV MOS devices. Especially, the BCD technology with high power capabilities (BiCMOS technology) and integration feasibility between analog and digital devices (CMOS technology) is considered a better solution. Furthermore, the BCD technology also provide better area efficiency [19], where low voltage devices are widely used as much as possible and many external components are able to be implemented on silicon. The most critical limitation, however, is that the gate to source voltage of the HV MOS transistor must be limited under a LV ≈5 V. Therefore, those mentioned prior works are not easy to be directly implemented using this HV BCD process.

In this paper, we propose novel HVMUX and HV transceiver to resolve all the mentioned problems. In Section II, we explain the specifications of HVMUX and HV transceiver. In Section III, the HVMUX is disclosed, including HV switch and HV gate voltage driver (HVGVD). For field applications, HVMUX converts the voltage drop of each battery in the same string into the input range of an analog-to-digital converter (ADC). In Section IV, the schematic of HV transceiver is shown and analyzed. Notably, the proposed HV transceiver can transmit and receive data with −32 to +32 V common voltage. In Section V, we demonstrate the measurement results of the proposed HVMUX and HV transceiver. The performance comparison between our design and several prior works is also discussed. Finally, a brief conclusion is given in Section VI.

II. BIM SYSTEM SPECIFICATIONS

A conceptual architecture of BIM is shown in Fig. 2, where voltage monitoring IC is composed of HVMUX and HV transceiver (upper BIM link and lower BIM link). The ADC is used to convert the output of HVMUX into a digital code, which will be passed via a serial link to HV transceiver by control logic to communicate with main controller in Fig. 1 [20]. Notably, the HVMUX and HV transceiver is operated in HV domain. The HVMUX is in charge of down-converting HV of each battery into the input range of the corresponding ADC. According to voltage measurement approaches [1], using the HVMUX is deemed as a better solution to save power and area, because each battery cell is not parallelly coupled to a corresponding ADC. Notably, a differential approach in HVMUX is good for autocancelling the common noise. The bottom line of such a design is that the voltage distortion caused by the HVMUX must be as small as possible.
For example, the voltage range of each battery is around 2–4 V. Therefore, the input range of HVMUX is from 2 to 32 V. HV switches in HVMUX should possess voltage tolerance up to maximum 32 V, which will be introduced and explained in Section III. In addition, if each transmitter in HV transceiver transmits data between GND +2.5 V and GND level, the receiver in upper BIM link must receive the voltage range between GND +16 and GND +32 V, where 16 and 32 V mean that all batteries are operated in 2 or 4 V, respectively. By contrast, the receiver in lower BIM link must receive the voltage range between GND −16 and GND −32 V. In short, our HV transceiver can exchange data with a −32 to +32 V common voltage to meet the mentioned system signal requirements, which will be introduced and explained in Section IV.

III. HV MULTIPLEXER

The proposed 8:1 analog HVMUX is shown in Fig. 3, including HV switches, HV subtractors and divider, LV multiplexer (LVMUX), and LV multiplier. The HVMUX selects a pair of input voltages, e.g., \(V_{\text{bat_in}[1]} \) and \(V_{\text{bat_in}[2]} \), and passes them to ADC, namely ADC_in. Switch[2:0] selects one battery in battery module to be sensed. Notably, the decoder converts Switch[2:0] into HV_S\[i\], \(i = 2–9 \), which chooses \(V_{\text{gate}} = V_X \) or \(V_{\text{gate}} = V_X - 5 \) by HVGVD. Therefore, M201 and M202 are protected from any over-voltage hazard.

1) First, Switch[2:0] is set to 111.
2) The top and bottom of Battery8 (\(V_{\text{bat_in}[9]} \) and \(V_{\text{bat_in}[8]} \)) are selected to HV subtractors and divider by HV switches.
3) Because the OTA in HV subtractors and divider is LV domain, \(V_{\text{bat_in}[9]} \) and \(V_{\text{bat_in}[8]} \) must be scaled down by eight. In other words, the difference of \(V_{\text{bat_in}[9]} \) and \(V_{\text{bat_in}[8]} \) (\(V_{\text{battery}} \)) is also scaled down by eight.
4) Finally, the LV multiplier is used to restore the \(V_{\text{battery}} \). The function description of each block of HVMUX is given in the following text.

A. HV Switches

The HV switches are composed of eight HV switch cells, where each HV switch cell comprises M201, M202, level-shift circuit, HVGVD, and an inverter, as shown in Fig. 4. M201 and M202 are HV devices. \(D_{M201} \) and \(D_{M202} \) are parasitic diodes of M201 and M202, respectively. Notably, \(|V_{gs}|\) of the HV devices must be smaller than 5 V. In other words, the voltage difference between \(V_X \) and \(V_{\text{gate}} \) must be clamped under 5 V. When \(V_{\text{gate}} \) is equal to \(V_X \), M201 and M202 are turned off. By contrast, when \(V_{\text{gate}} \) is equal to \(V_X - 5 \), M201 and M202 are turned on. The level-shift circuit is used to generate \(V_X - 5 \), namely \(V_X - 5 \). Referring to Fig. 4, the HV switch is driven by HV_S[i], \(i = 2–9 \), which chooses \(V_{\text{gate}} = V_X \) or \(V_{\text{gate}} = V_X - 5 \) by HVGVD. Therefore, M201 and M202 are protected from any over-voltage hazard.

B. HV Gate Voltage Driver

Fig. 5 shows the schematic of HVGVD, including three HV resistors (\(R_t \), \(R_b \), and \(R_p \)), MN501, and MP501–MP507, where MN501 and MP501 are HV devices. Again, \(|V_{sg}|\) of the HV devices must be smaller than 5 V. The \(V_{sg} \) of MN501 is driven by HV_S[i], \(i = 2–9 \), which is a digital signal. Therefore, MN501 is ensured without any over-voltage hazard. To prevent the over-voltage damage of MP501, the voltage difference between \(V_X \) and \(V_a \) must be smaller than 5 V. Because \(V_a \) is derived from \(V_X \), the voltage range of \(V_X \) is
analyzed in two scenarios, i.e., LV mode \((V_X \leq 5\, \text{V})\) and HV mode \((V_X > 5\, \text{V})\).

In HV mode, \(V_a\) is clamped by \(R_p\) and MP502–MP507. In other words, \(V_a\) is constrained by following:

\[
V_a = V_X - (V_{R_p} + 6 \times |V_{thp}|) \tag{1}
\]

where \(V_{R_p}\) is the voltage drop of \(R_p\), and \(|V_{thp}|\) is the threshold voltage of MN502–MN507. The \(V_{sg}\) of MP501 is then written as follows:

\[
V_{sg} \text{ of MP501} = V_{R_p} + 6 \times |V_{thp}| < 5\, \text{V} \tag{2}
\]

where \(V_{R_p}\) is negligible because \(R_p\) is used to limit the peak current from \(V_X\) such that the MP502–MP507 are protected from large current hazards.

In LV mode, \(V_a\) is generated by \(R_t\) and \(R_b\). Assumed \(R_t\) is equal to \(R_b\), \(V_a\) is the half of \(V_X\). Thus, \(V_{sg}\) of MP501 is half of \(V_X\) (\(\leq 2.5\, \text{V}\)). Therefore, MP501 is also ensured without any over-voltage hazard.

C. Level-Shift Circuit

Level-shift circuit is composed of a current source, \(I_{bias}\), two current mirrors, M601–M604, and a load resistor, R601, as shown in Fig. 6. Current source, \(I_{bias}\), and M601 and M602 are LV devices. M603, M604, and R601 are HV devices. Level-shift circuit generates \(V_X - 5\), which can be constrained by the following:

\[
V_{X-5} = V_X - R601 \times I_3 \tag{3}
\]

where \(I_3\) is the current through R601. Assume the voltage difference between \(V_X\) and \(V_{X-5}\) is equal to 5 V, R601 can be written as

\[
R601 = \frac{5}{I_3} = \frac{5}{I_1 + I_2} \tag{4}
\]

where \(I_1\) is the drain current of M604, which is supplied by the \(I_{bias}\), \(I_2\) is the input current of HVGVD. Referring to Fig. 5, \(I_2\) can be derived as

\[
I_2 = \frac{V_X}{R_t + R_b + R_{oMN501}} \tag{5}
\]

where \(R_{oMN501}\) is the output resistor of MN501. Substituting (5) into (4), R601 can be found as

\[
R601 = \frac{5}{I_1 + \frac{V_X}{R_t + R_b + R_{oMN501}}} \tag{6}
\]

Equation (6) shows how to calculate the device parameter of R601, where \(I_1\), \(R_t\), \(R_b\), and \(R_{oMN501}\) can be determined based on the limitation of power dissipation.

D. HV Subtractors and Divider

Fig. 7 shows the schematic of HV subtractors and divider composed of an operational transconductance amplifiers (OTA), R701, and R702, where R701 and R702 can be selected based on the voltage and current tolerance.

Take \(V_{\text{battery}}\) in Fig. 3 as an example, it can be derived as follows:

\[
V_{\text{battery}} = \frac{R_{702}}{R_{701}} \times (V_{\text{bat_in}[9]} - V_{\text{bat_in}[8]}) \tag{7}
\]

where \((V_{\text{bat_in}[9]} - V_{\text{bat_in}[8]})\) is the voltage drop of the first battery on the top, while the ratio of \(R_{702}\) and \(R_{701}\) is utilized to shift the voltage of this battery into a lower voltage range.

A rail-to-rail amplifier topology [21] is adopted to implement the OTA in Fig. 7. The detailed schematic of the OTA is shown in Fig. 8. The input pairs, i.e., n-type and p-type input stages, allow a wide input range. The gain stage use a cascode architecture to boost the gain. The Miller resistors and capacitors in the output stage are in charge of phase compensation. The n-type and p-type common source
amplifiers (output stage) are used to enlarge output voltage range. In addition, enable pin is the power gating signal to activate the entire OTA for the sake of power saving.

\[\text{ADC}_{\text{in}} = \left(1 + \frac{R_{902}}{R_{901}}\right) \times \text{LV_MUX}_{\text{out}} \]

E. LVMUX and LV Multiplier

LVMUX in Fig. 3 is composed of eight transmission gates, which are, respectively, driven by OP_S[0]–OP_S[7], as shown in Fig. 9. LVMUX selects one of OP_S8_out–OP_S1_out to be LV_MUX_out. The last stage in Fig. 3 is LV multiplier, as shown in Fig. 10. LV multiplier multiplies the voltage at LV_MUX_out with \(\frac{R_{902}}{R_{901}} \) to generate a scaled output voltage, ADC_in, for the following ADC in Fig. 2:

\[\text{ADC}_{\text{in}} = \left(1 + \frac{R_{902}}{R_{901}}\right) \times \text{LV_MUX}_{\text{out}} \]

\[(8) \]
IV. HV Transceiver

Referring to Figs. 1 and 2 again, HV transceiver is composed of upper BIM link and lower BIM link, as shown in Fig. 11. Upper BIM link is used to communicate with the upper adjacent BIM by TX_H and RX_H. By contrast, lower BIM link is in charge of communicating with the lower adjacent BIM by TX_L and RX_L. The functionalities of HV transceiver are summarized in Table I. Notably, RX_H must receive positive HV signals (assumed using in a series of eight batteries and common voltage is 16–32 V) from the upper adjacent BIM, and RX_L receive negative HV signals (common voltage: −16 to −32 V) from the lower adjacent BIM.

A. TX_H and TX_L

The two transmitters, TX_H and TX_L, are used to transfer data to upper and lower adjacent BIMs at the same time. Therefore, they are realized using same circuits to convert TXD_H (or TXD_L) to CHN1_D and CHP1_D (or CHN2_U and CHP2_U), as shown in Fig. 12 [22], where BUF is a buffer to supply a large drive current. Referring to Fig. 12, M111–M114 consists of a cross coupling and positive feedback loop to speed up the transition. In addition, it can decrease the phase delay between CHN1_D and CHP1_D (or CHN2_U and CHP2_U). Most important of all, the voltage swing of all outputs is from VDD25 (2.5 V) to GND (0 V) for control logic.

B. RX_H and RX_L

To receive data from upper and lower adjacent BIMs, the two receivers, RX_H and RX_L, must convert the positive and negative HV signals (16–32 V and −16 to −32 V) into 0–2.5 V. Notably, they are equipped with HV tolerance. Fig. 13 shows the schematic of RX_H, including two converting circuits and a comparator with hysteresis [23]. The converting circuit has to convert the CHP2_D and CHN2_D into the input range of the following comparator. Each converting circuit consists of OTA, R121–R124, generating CCP and CCN voltage references. CCP is constrained by the following:

\[
CCP = \text{CHN2}_D \times \frac{R_{124}}{R_{123} + R_{124}} \times \left(1 + \frac{R_{121}}{R_{122}}\right)
\]

\[
-\text{CHP2}_D \times \frac{R_{121}}{R_{122}} \quad (9)
\]

where the first term at the right hand is adjusted as a common voltage. The conversion function is based upon the linear mapping from 16–32 to 0–2.5 V such that the ratios of \(\frac{R_{121}}{R_{122}} \) and \(\frac{R_{124}}{R_{123}} \) can be easily calculated. Similar to CCP, CCN is also derived. Therefore, the comparator can compare CCP with CCN to generate RXD_H. Assumed R122 and R123 are more than 10 times of R121 and R124, RXD_H can be rewritten as

\[
RXD_H = A_o \times \frac{\text{CHP2}_D - \text{CHN2}_D}{\frac{R_{121}}{R_{122}} + \frac{R_{124}}{R_{123}}} \quad (10)
\]

where \(A_o \) is the dc gain of the comparator and is far larger than the last term (R121/R122 + R124/R123). Therefore, when \(\text{CHP2}_D \) is larger than \(\text{CHN2}_D \), RXD_H is pulled high as logic 1. By contrast, when \(\text{CHP2}_D \) is lower than \(\text{CHN2}_D \), RXD_H is pulled low as logic 0.
By contrast, RX_L is in charge of converting negative HV signals from (−16 to −32 V) into (0 to 2.5 V). The schematic of RX_L is similar to that of RX_H. Notably, the output of RX_L is RXD_L, as shown in Fig. 11.

V. IMPLEMENTATION AND MEASUREMENT

The proposed design is implemented using 0.25 µm 1-poly 3-metal 60 V BCD process to justify the performance. Fig. 14 shows the die photo of the proposed voltage monitoring IC on silicon. The core area is 2.922 × 1.967 mm², where the area of one HV transceiver and one HV switch cell are 0.843 × 0.335 and 0.7 × 0.3 mm², respectively.

Fig. 15 shows the error distribution of HVMUX given three different input ranges, where \(V_{\text{battery}} \) is voltage of battery from 2 to 5 V. These input ranges are described as follows.

1) LV (5–10 V): lower range of input voltage range in HVMUX.
2) Middle voltage (15–20 V): typical range of input voltage range in HVMUX.
3) HV (27–32 V): upper range of input voltage range in HVMUX.

The worst-case error of HVMUX is less than ±2.54%. Fig. 16 shows the off-isolation of HVMUX. Given a normal 1 MHz data rate, the performance of off-isolation achieves −92 dB. Therefore, the proposed HVMUX will not be contaminated by digital control logic signals in Fig. 2.

The measurement setting of the proposed HV transceiver is shown in Figs. 17 and 18. TXD1 is the input data. The lower BIM transmits data to the upper BIM by CHP_U.
Fig. 18. Photo of the measurement prototype with the proposed voltage monitoring IC.

Fig. 19. Measurement results of HV transceiver.

Fig. 20. Eye diagrams of HV transceiver given 70 Mb/s data rate (maximum) from lower BIM to upper BIM.

Fig. 21. Eye diagrams of HV transceiver given 36 Mb/s data rate (maximum) from upper BIM to lower BIM.

All of the measurement results are shown in Fig. 19. All of these signals, TXD1, RXD2, RXD1, should demonstrate the same logic values, except the delays there between. The propagation delays are 36.45 and 26.83 ns, respectively. The eye diagrams of HV transceiver given maximum data rates are also measured, as shown in Figs. 20 and 21. The maximum data rate from TX_H to RX_L and from TX_L to RX_H are 70 and 36 Mb/s, respectively.

The performance of the proposed HVMUX and HV transceiver is summarized and compared with several prior works in Tables II and III. Referring to Table II, our proposed HVMUX without SOI technology attains the second best isolation, $-92\,\text{dB}$ at 1 MHz. Referring to Table III, the proposed HV transceiver achieves the second best propagation delay and power dissipation. Most important of all, no isolator nor any discrete (opto-couplers) is needed in our proposed HV transceiver.
VI. CONCLUSION

In this paper, we propose a total HV solution on silicon for BIMs. The proposed design is implemented using a typical 0.25 μm 1-poly 3-metal 60-V BCD process such that it can be easily integrated in a possible SoC solution for BMS. The measurement results justify our design to be a high performance analog HV multiplexer (HVMUX) with HV transceiver. The error of the proposed HVMUX is smaller than 2.54% from 5 to 32 V, as shown in Fig. 15. In addition, the off-isolation of HVMUX is −92 dB@1 MHz. Lastly and most importantly, the proposed HV transceiver does not need additional discrete components and isolators.

ACKNOWLEDGMENT

The authors would like to thank Chip Implementation Center (CIC) of Nation Applied Research Laboratories (NARL), Taiwan, for their thoughtful chip fabrication service.

REFERENCES

Chih-Lin Chen (S’10) was born in Taiwan, in 1986. He received the B.S. and M.S. degrees in electrical engineering from National Sun Yat-Sen University, Kaohsiung, Taiwan, in 2008 and 2010, respectively, where he is currently pursuing the Ph.D. degree in electrical engineering.

He is a Visiting Scholar with Brandenburgische Technische Universität, Cottbus, Germany. His current research interests include VLSI design, high voltage mixed-signal circuit design, automobile system design, and sigma-delta ADC design.

Deng-Shian Wang was born in Taiwan, in 1988. He received the B.S. and M.S. degrees in electrical engineering from National Sun Yat-Sen University, Kaohsiung, Taiwan, in 2011 and 2013, respectively, where he is currently pursuing the Ph.D. degree in electrical engineering.

His current research interests include analog design.

Jie-Jyun Li was born in Taiwan, in 1986. He received the B.S. and M.S. degrees in electrical engineering from National Sun Yat-Sen University, Kaohsiung, Taiwan, in 2008 and 2013, respectively. His current research interests include analog design.

Chua-Chin Wang (M’99–SM’04) received the Ph.D. degree in electrical engineering from the State University of New York at Stony Brook, Stony Brook, NY, USA, in 1992. He joined the Department of Electrical Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan, and has been a Full Professor since 1998. He was a Chairman of the Department of Electrical Engineering, NSYSU, from 2009 to 2012. His current research interests include memory and logic circuit design, communication circuit design, and interfacing I/O circuits. In 2000, he co-founded Asuka Semiconductor Inc., Hsinchu, Taiwan, which is an IC design house, and became an Executive Secretary in 2005. He applies most of his research results on biomedical, memories, consumer electronics, and wireless communication applications, such as implantable ASIC/SoC, DVB-T/H and NTSC TV circuits, low power memory, and high speed digital logic.

Dr. Wang has received the Outstanding Youth Engineer Award of Chinese Engineer Association in 1999 and the NSC Research Award from 1994 to 1999. He has received the Best Inventor Award from NSYSU in 2005, the Distinguished Engineering Professor Award from the Chinese Institute of Engineers and Distinguished Engineer Award from the Chinese Institute of Electrical Engineering in 2006, the Distinguished Electrical Engineering Professor Award from the Chinese Institute of Electrical Engineers in 2007, the Outstanding Paper Award from the 2008 IEEE International Conference of Consumer Electronics in 2008, and the Best Inventor Award in 2009. He was elevated to be Distinguished Professor of NSYSU in 2010. He became an IET Fellow in 2012. He has served as a Program Committee Member in many international conferences. He was a Chair of the IEEE Circuits and Systems Society (CASS), Tainan Chapter, from 2007 to 2008. He was the Founding Chair of the IEEE Solid-State Circuits Society, Tainan Chapter, from 2007 to 2008, and the Founding Consultant of the IEEE NSYSU Student Branch. He is a member of the IEEE CASS Multimedia Systems and Applications, VLSI Systems and Applications, Nanoelectronics and Giga-Scale Systems, and Biomedical Circuits and Systems Technical Committees. He was a Chair of the IEEE CASS Nanoelectronics and Giga-Scale Systems Technical Committee from 2008 to 2009. Since 2010, he has been an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART II: EXPRESS BRIEFS. He is currently serving as an Associate Editor for the IEEE Transactions on Electronics and the Journal of Signal Processing. He was a General Chair of the 2007 VLSI/CAD Symposium. He was a General Co-Chair of the 2010 IEEE International Symposium on Next-Generation Electronics. He is a General Chair of the 2011 IEEE International Conference on IC Design and Technology and the 2012 IEEE Asia-Pacific Conference on Circuits and Systems.