POWER-AWARE PIPELINING DESIGN OF AN 8-BIT CLA USING PLA-STYLED ALL-N-TRANSISTOR LOGIC

Chua-Chin Wang, Ching-Li Lee, and Pai-Li Liu

Department of Electrical Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan 80424
email: cchwang@ee.nsysu.edu.tw

Abstract: A high speed and low-power 8-bit carry-lookahead adder (CLA) using two-phase all-N-transistor (ANT) blocks which are arranged in a PLA design style with power-aware pipelining is present. The pull-up charging and pull-down discharging of the transistor arrays of the PLA are accelerated by inserting two feedback MOS transistors between the evaluation NMOS blocks and the outputs. The analysis of the area (transistor count) tradeoff is also provided in this work. The output of the addition of two 8-bit binary numbers is done in 2 cycles. The proposed power-aware pipelining design methodology takes advantage of shutting down the processing stages with identical inputs in two consecutive cycles. Not only is it proved to be also suitable for the long adders, the power consumption is drastically reduced by at most 50% at every process corner.

Index Terms: power-aware, ANT, single clock, CLA, pipeline

I. INTRODUCTION

Fast adders are key elements in digital circuits, including multipliers, and DSP chips. Many efforts have been focused on the improvement of adder designs [3], [5], [6]. CMOS dynamic logic has been recognized as one of the promising options to challenge the GHz operations for the adder design [1], [2]. Other logics suffer from different difficulties which were addressed in [5]. However, the major trade-off of these prior GHz logic circuits is the high power consumption which is not a tolerable price to pay in recent mobile technologies. We, hence, propose a power-aware PLA-like structure using our high-speed all-N-transistor (ANT) function block [5], [6], [7]. An 8-bit CLA using ANTs which are arranged in the power-aware PLA-like structure and triggered by a single clock is implemented to verify the power reduction as well as the preservation of high speed. The major advantage of the power-aware design methodology is that it is robust regardless of long data words, e.g., 64-bit binary data. The 8-bit CLA using PLA-styled ANT logic is simulated to be fully functional up to 1.0 GHz at 2.5 V power supply, while the correct result of addition is available after 2 cycles. The power reduction is simulated to be almost 50% compared to the prior works.

II. POWER-AWARE HIGH-SPEED 8-BIT CLA

A. All-N-Transistor (ANT) Function Unit

A modified dynamic logic, ANT [7], has been proposed in Fig. 1. The feature of this modification is the feedback transistor pair, P3 and N3, between the evaluation block and the output.

1. When \(\text{clk} = 0 \), P1 is on and the gate of P2 is precharged to be \(V_{dd} \). Then, P2 is off and N4 is off. This makes the output to stay at the previous state.

2. When \(\text{clk} = 1 \) and the N-block is evaluated to be "pass," the charge at node \(a \) should be ground through the N-block and N1 theoretically. Note that N4 is on and N2 is also on at the beginning. If the previous state of output is high, then N3 will be turned on by N4. This means that N3 provides another fast discharging path for the charge at node \(a \). When the voltage at node \(a \) is dropped below the threshold voltage of PMOS, P2 and P3 start to be on. The output will then be charged to \(V_{dd} \) via paths P2 and P3-N4.

3. When \(\text{clk} = 1 \) and the previous state of the output is low and the N-block is evaluated to be "pass," the voltage at node \(a \) starts to drop. When \(V_a - V_{dd} > V_{tp} \), P3 will be on such that the gate of N3 will be charged to be \(V_{dd} \). Not only the charge at node \(a \) will be discharged faster, but also the output will be charged to high via P2 and N4.
4. When \(\text{clk} = 1 \) and the N-block is evaluated to be "stop", the charge at node \(a \) should be kept if the previous state of output is low. There will be no discharging path for node \(a \) because \(N_3 \) will be off via \(N_4 \). If the previous state is high, the output will be ground via \(N_4 \) and \(N_2 \) before the voltage at node \(a \) starts to drop.

Summarized from 2) and 3), in the above, the output will be high when the N-block is evaluated "pass", i.e., "1", during \(\text{clk} = 1 \). By 4), the output will be low when the N-block is evaluated "stop", i.e., "0", during \(\text{clk} = 1 \). The function of ANT logic block, thus, is conclusively correct and non-inverting. Restated, \(P_3 \) and \(N_3 \), respectively, provide an extra charging path and an extra discharging path such that the speed of the evaluation can be accelerated.

In addition to the previous discharging path problem, one of the reasons why other high-speed logic can not run correctly given clocks with short rise time or fall time is that the size of each transistor can not be tuned properly. Both [1] and [2] intrinsically possess this shortcoming. The sizing problem of the transistors in the ANT besides those in the N-block drastically affect the speed. We have been proceeded several simulations to find out the best figure of merit for the sizing of each transistor in Fig. 1 using TSMC (Taiwan Semiconductor Manufacturing Company) 0.25 \(\mu \)m 1P5M CMOS technology.

B. PLA-Styled 8-Bit CLA Design

The formulation of a 8-b CLA is represented by the following equations:

\[
S_i = C_{i-1} \bigoplus P_i
\]

\[
C_i = G_{i-1} + P_{i-1}G_{i-2} + P_{i-1}P_{i-2}G_{i-3} + \ldots + P_{i-1}P_{i-2} \ldots P_1P_0C_0
\]

(1)

where \(A_i, B_i, i = 0...7 \), are inputs, and \(P_i, G_i \) are propagate and generate signals, respectively, \(P_i = A_i \bigoplus B_i \), \(G_i = A_i \cdot B_i \). If the \(P_i \)'s and \(G_i \)'s are produced by combinatorial logic function blocks before they are fed into the function blocks for \(S_i \)'s and \(C_i \)'s, then Eqn. (1) implies that a two-level AND-OR logic function block is a possible solution to achieve high speed operations. Thus, the PLA-styled design is suitable for such a function block. A conceptual PLA-styled design for CLA is shown in Fig. 2. A typical PLA consists of an AND array and an OR array. It is well known that the series NMOS in the evaluation block of NAND or AND gates will produce long discharging delays which subsequently slow down the entire circuit. We can take advantage of the non-inverting feature of the ANT logic to utilize a NOT-OR-NOT-OR configuration instead of the typical AND-OR style, where the two OR planes are made of ANT logic blocks. Meanwhile, it can also minimize the series transistor count in the evaluation block. The OR array is made of the ANT logic with a predefined evaluation block. The inputs to the first OR array is the inverted \(P_i \)'s (propagate) and \(G_i \)'s (generate) signals which are also produced by other ANT logic units as shown in Fig. 3. Note that we define the propagate signals in a different way from the traditional \(P_i = A_i + B_i \) because the \(P_i = A_i \bigoplus B_i \) can be reused to generate the sum term, i.e., \(S_i \).

C. Speed and Area Analysis

Speed: The critical path of an adder resides on the generation of carry signals, i.e., \(C_i \) in the 8-bit adder. After the binary data are ready, the generation of \(P_i \)'s and \(G_i \)'s by using the ANT logic takes the high half of a full cycle. That is, the results of GP blocks will be ready when the \(\text{clk} \) is low. The inverted \(P_i \)'s and \(G_i \)'s will then be fed into the first OR plane of the ANT-based PLA. The inverted outputs of the first OR plane will be presented to the second OR at the high half of the second cycle. The final \(G_i \)'s results then are ready in the low half of the second cycle. Right after the generation of every \(C_i \)'s, they are inverted and fed into the \(S_i \)'s function blocks. Another half cycle then is required to produce all of the \(S_i \)'s. The final result will be latched after 2 cycles.

Area: As for the transistor count of the PLA-styled implementation for CLA using ANT logic, an analytic form is obtained after careful derivations. In short, if an \(n \)-bit CLA is to be realized by our methodology, the transistor count can be computed as: \[T_{total} = \frac{1}{6}(n + 1)(n + 2)(n + 3) + 5n(n + 1) + 50n + 3 \]

D. Power-Aware Pipelining

A simple thought to improve the power efficiency is to "deny" the current fed into those function units of which the input data are identical between two consecutive operation cycles. The dynamic power, hence, of CMOS logic elements will be drastically reduced. Take the ANT block shown in Fig. 1 as an example. Assume the N-block is composed of two cascaded NMOS tran-
sisters to constitute an AND gate. The probability of
the data inputs of two consecutive operation cycles is
25% which implies a significant portion of power con-
sumption. Hence, a monitoring circuitry as shown in
Fig. 4 is proposed to resolve the low power demand.
The power-aware pipelining (PAP) design is composed
of three blocks: an ATD, a 2-bit counter, and a voltage
regulator. Four cascaded inverters and an XOR gate
consist of a simple ATD (asynchronous transition de-
tector). If any data bit flips its state, a strobe will be
generated at the output of the XOR which consequently
enable the 2-bit counter to tick for two clocks which are
enough for the ANT unit to complete its computation.
As soon as the two clocks are elapsed, the feedback cir-
cuity of the counter clear the register cells therein to
wait for the next enabling strobe. Notably, \(Q_d \) is used
as the clock signal of the following ANT unit. When the
counter is disabled, the \(Q_d \) is kept at high to disable the
current source in the following ANT unit such that its
output state remains.

However, the most critical part of the proposed PAP
is the sensitivity of the strobe duration with respect to
the power variation. One of the most efficient approach
to avoid the unstable power supply is to employ step-
down bandgap-referenced voltage regulators to supply
a temperature independent reference voltage, \(V_{ref} \), to
the rest of the circuitry [4]. Referring to Fig. 5, the
regulator is composed of \(\Delta V_{pp} \), PM61, and a resistor
string. The generated internal voltage for the PAP is a
very stable \(V_{int} = V_d - V_{th} \).

III. PERFORMANCE SIMULATIONS AND
COMPARISON

The data flow block diagram of the proposed 8-bit
power-aware PLA-styled ANT-based CLA is shown in
Fig. 6. The detailed schematic and layout of the CLA
implemented by TSMC 0.25 \(\mu m \) 1P5M CMOS process
shown in Fig. 7 and 8, respectively. An example of the
output waveform of 8-bit power-aware PLA-styled CLA
using ANT logic shown in Fig. 9 illustrates that the
result of an addition appears after two cycles given the
clock = 1.0 GHz. The characteristics of the proposed
power-aware CLA is tabulated in Table 1.

In order to reveal the power-saving advantage of the
proposed power-aware design, two 2-input ANT-based
OR gates are respectively implemented by [7] and the
proposed design using the same CMOS process. The
power reduction of the power-aware design is shown in
Table 2. The simulations are carried out by HSPICE
Monte Carlo method with sweep = 30.

IV. CONCLUSION

We propose a power-aware high speed PLA-styled
ANT logic design for the adders' implementation. Not
only the correctness of the function in the giga hertz
range is preserved, but also the power dissipation is
Figure 5: Regulator in the power-aware circuitry

Figure 6: Data flow block diagram of the proposed CLA

Figure 7: Schematic of the proposed CLA

Figure 8: Layout of the proposed CLA

Figure 9: Post-layout simulation result

Table 1: Characteristics of the proposed power-aware 8-bit adder

<table>
<thead>
<tr>
<th>proposed CLA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>system clock</td>
<td>1.0 GHz</td>
</tr>
<tr>
<td>input data rate</td>
<td>100 - 500 MHz</td>
</tr>
<tr>
<td>avg. power</td>
<td>7.5 mW@500 MHz</td>
</tr>
<tr>
<td>area</td>
<td>1.16×0.75mm²</td>
</tr>
<tr>
<td>transistor count</td>
<td>1026</td>
</tr>
</tbody>
</table>

Table 2: Power reduction by using the power-aware circuitry

<table>
<thead>
<tr>
<th>period</th>
<th>power-aware</th>
<th>reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ns</td>
<td>36.295 mW</td>
<td>51%</td>
</tr>
<tr>
<td>100 ns</td>
<td>34.125 mW</td>
<td>68%</td>
</tr>
<tr>
<td>200 ns</td>
<td>34.472 mW</td>
<td>78%</td>
</tr>
</tbody>
</table>

reduced. The PLA-styled ANT-based structure using only one clock makes the result of an 8-b adder appear in 2.0 cycles (ns if the 1.0 GHz clock is used), or a hierarchical 64-b adder in 4.0 cycles.

References

