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Abstract. A 2-D) model for evidential reasoning is proposed, in which the belief function of evidence
is represented as a belief density function which can be in a conlinuvous or discrete form. A vector form
of mutual dependency relationship of the evidence is considered and a dependency propagation theorem
is proved, This robust method can resolve the conflicts resulting from either the mutual dependency
among evidences or the structural dependency in an inference network due to the evidence combination
order. Beliel conjunction, beliel combination, beliel propagation procedures, and ANIVOR operations
of an inference network based on the proposed 2-D model are all presented, followed by some examples
demonstrating the advantages of this method over the conventional methods,
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1. Introduction

Evidential reasoning, which has been an essential part of many computational sys-
tems, is the task of assessing a certain hypothesis when certain pieces of evidence
are given. The hypothesis is assessed by inferring its belief value from the belief
values of different pieces of evidence. The belief value can be taken from a certain
belief region, e.g., a unit interval [0,1], which can be discrete or continuous, or from
a set of linguistic quantifiers, e.g., [very unlikely, unlikely, likely, very likely], etc.
Regardless of the type of representation, the belief value of an evidence indicates
the belief strength of that evidence. In describing the relationship between differ-
ent picces of evidence, dependency has been employed to describe the degree of
truth of one piece of evidence implied by a second piece of evidence. The be-
lief strength of an evidence is not subject to any change of another evidence is a
basic definition of independency of the evidence. On the other hand, if the belief
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strength of an evidence is subject to another piece of evidence, it is deemed that
there is a dependency relationship between these two pieces of evidence. If a hy-
pothesis is supported by many pieces of evidence, then the combined belief strength
of the hypothesis is the belief value caused not only by the individual evidence but
also the mutual dependencies among the pieces of evidence supporting the hypoth-
esis.

Because of the obscure and inexact nature of information, each piece of evidence
is associated with some uncertainty. Reasoning with uncertainties in an inference
network [3] includes three types of uncertainty aggregations: belief conjunction,
belief combination, and belief propagation. There are three major frameworks of ev-
idential reasoning in the literature, i.e., the Dempster—Shafer theory of evidence,
the fuzzy set theory, and the Bayesian probability theory [7, 12]. The advan-
lages and disadvantages of these three frameworks have been discussed in [1, 2,
14, 15, and 16]. The ability of Shafer’s belief function to manage uncertainty of
information in a rule-based system has attracted much attention in artificial intel-
ligence research. However, even with its strong popularity, the Shafer’s model
has drawbacks. Shafer’s belief function model uses numerical values in the in-
terval [0,1] to represent the degree of belief of information, which can also be
interpreted as an index of inexaciness of that information. The nonrobustness of
this model has been discussed in [5, 17]. Secondly, the basic probability assign-
ment (BPA) of a belief function is in a form of discrete type function which can
not always provide a precise description of an evidence for all the situations. It
is often not appropriate to assign a discrete basic probability assignment over [0,1]
by thresholding the interval into several regions, since the thresholds themselves
can not describe the exact nature of an evidence. The possible quantization prob-
lem caused by thresholding a continuous region for the weight of evidence has
been discussed in [1], which provides an example showing that a quantized ver-
sion of an associative belief combination may not necessarily be an associative
one. The continuous form of a belief function, which is a more general repre-
sentation, is needed to approximately express the vagueness of an evidence. An
example which can be properly managed by neither Shafer’s model nor the fuzzy
set theory will be given in Section 2.1. Several other belief function approaches
are included in [4] and [8], which have focused on handling the belief combina-
tion problem by using Dempster’s rule to deal with belief propagation. However,
these approaches didn’t provide a formal proof of their respective methods. Other
previous work includes Shafer and Logan’s algorithm for hierarchically structured
hypotheses [11], and an improved algorithm by Shafer and Shenoy [13]. In a rule-
based intelligent system, the inconsistency of evidential reasoning resulting from the
mutual dependency among different pieces of evidence and the structural depen-
dency caused by the improper arrangement of an inference network has not been
fully solved. One example to illustrate this inconsistency will be provided in Sec-
tion 2.3,

Although much effort has been spent on belief combination, the uncertainty man-
agement of continuous belief function and the conflict due to the dependency of
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evidence are still not solved. The following is a proposed method which focuses on
achieving conflict resolution of belief combination resulting from mutual dependency
of evidence in an inference network. In addition, this method can also handle the
information aggregation based upon the continuous beliel functions, which is closer
to the human reasoning process. The nature of a belief function associated with
an evidence is a probabilistic function, which could be discrete or continuous. We
will discuss the belief conjunction first, since the belief combination and the belief
propagation are both based on the belief conjunction. The belief combination is
the belief conjunction of many pieces of evidence supporting the same hypothesis,
while the belief propagation is the belief conjunction of a piece of evidence and a
rule [5].

This paper is organized as follows: Section 2 presents a new representation of the
uncertainty of an evidence and an inference rule. The theory of the proposed model,
called 2-D model, is discussed and applied to establish a procedure of handling be-
lief conjunction, belief combination, belief propagation, and AND/OR operations.
Section 3 provides an example showing the advantages of the 2-D model, followed
by the conclusion in Section 4.

2. Theory of the 2-D Model

2.1. REPRESENTATION OF EVIDENCE AND RULE

The first step in the simulation of human reasoning with uncertainty is to find a
proper way to represent the uncertainty and then build up the inference procedure.
In the belief function introduced by Shafer [12] and Hau [5], two parameters, i.e.,
lower bound and upper bound, are employed to indicate credibility and plausibil-
ity. For the sake of clanity, the belief function is borrowed to represent the belief
density function associated with an evidence in the following text, and the belief
function proposed by Shafer, [11-13] is named as Shafer’s belief function. But,
as discussed earlier, the probability assignment strategy for Shafer’s belief func-
tion has its inherent drawback. For example, if a piece of evidence is to empha-
size that the closer it is to the truth, the stronger it is, then that evidence can be
conveniently modeled by a linear continuous function, which is a density func-
tion,

Bel(8) = k - 6, m

where @ is in the interval [0,1] indicating the authenticity of the evidence, and k
i5 a constant. We can hardly find any significant thresholds to quantize the associ-
ated belief function into a discrete form which can be handled by either Dempster—
Shafer theory [2] or Hau's modified Dempster’s rule [5]. Therefore, a more gen-
eral representation of evidence is needed to represent such kind of uncertainty.
In the following, we present our representation of the evidence and the inference
rules.
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DEFINITION 1. A piece of evidence in a rule-based system is represented by a
subset A of the frame of discernment ©, and a belief function associated with A is
represented by a belief density function p4(#), where @ is a variable indicating the
degree of truth for the evidence. A denotes the complement of A. 1 is used to denote
the truth of the evidence and 0 is used to denote the falsity of the evidence. 7 is a
numerical value in the interval [0,1]. The t>tal amount of belief in the interval [0,1]
it

1
ﬁhmM=L (2)

In order to avoid any confusion, this representation is called the belief density function
which is a function to describe the distribution of a fixed amount of belief, say 1, in an
interval [0,1]. This type of belief density function can be transformed into a Shafer's
beliel function by assigning two bounds to the interval. For instance, if the above
linear continuous belief function, equation (1), is going to be transformed into the
conventional beliel function by choosing two thresholds in the belief region [0,1]
and compute the respective area of each part so that the numerical values of the
credibility and the plausibility of this belief function are obtained. If two thresholds,
say 1/3 and 2/3, are chosen and k is 2 derived from equation (2), the following
results are obtained,

: 5 ’ 8

Cr= 20d8 = —, Fl = 20d8 = =,

243 9 13 9

On the other hand, given a Shafer’s belief function by BPA method, e.g., a belief
function with credibility 5/9 and plausibility 8/9, it can not precisely express the
characteristics of the linear continuous belief function shown by equation (1).

DEFINITION 2. A rule R in a rule-based system conveying uncertainty is repre-
scoted as

R E—H with pg_(6),

where E is an evidence, H is a hypothesis implied by E, and pe_g(f) is a belief
density function to describe the degree of the truth of the rule. E is called antecedent,
and H 1s called consequent of rule R.

In the above definition, the rule R: E — H is interpreted as logic implication. In
Scction 1, we mentioned the inconsistency of evidential reasoning resulting from the
mutual dependency among different pieces of evidence and the structural dependency
caused by the various arrangements of an inference network. One example showing
such inconsistency will be given in Section 2.3. The [ollowing definition of degree
ol mufual dependency is given to describe the relationship between two pieces of
evidence.
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DEFINITION 3. The degree of an evidence A depending on another evidence B is
represented by pyz, where by 0 € pag < 1.

Note that ps4p is not necessarily equal to pp4, which means a dependency rela-
tionship is a directed link. If pap equals 1, then it indicates A is totally dependent
on B; if pap is 0, then A won’t be affected by B at all. In the following, pa=p is
used to denote the belief function of evidence A depending on evidence B, and pap5
is used to denote the coefficient of A depending on B.

2.2, BELIEF CONIUNCTION

By definition, belief conjunction refers to the deduction of the belief associated with
(A N B} from the belief associated with evidence 4 and B, respectively. That is,
given two frames of discernment &, and &g, a compatibility relation between ©,4
and ®p is the Cartesian product of them, which is represented as

B4 x B —s Bunp. (3)

There are three possible dependency relationships between two pieces of evidence A
and B, which are

(i) A and B are independent;
(ii) A depends on B; and
(iii) B depends on A.
The relationship between two pieces of evidence can not be explicitly expressed by
only one of the above relationships due to the vagueness and incompleteness of the

evidence. In the following, we will develop a general formulation te cope with such
a siluation. Let

Conj(4,B)= AN B

and
Pans'®) = p;  Pusep(0) + p45  Pacp(®) + P54 - Ppaa(f)
Piudrp{g]
= [PrPus Peal | Pasp(®) (4)
Fgg.,[(ﬂ)
=a-P,
where

o= [F"J Pag PBals



152 CHUA-CHIN WANG AND HON-50M DON

Phﬁspw}
oo 18]

Ppa alf)
The p's are dependency coefficients, which represent the degree of dependencies and
or + pap + pea = 1. The « is called dependency vector, and the P is called the
belief function vector. There are three terms in (2), representing three different types
of belief conjunction. Their meanings and how they can be computed are discussed
in the following.

Case 1: Independent

Referring to Figure 1, since the two pieces of evidence A and B are indepen-
dent, we assume that they can be located, respectively, on the two axes p and v
of the Cartesian coordinates. The belief densily function of the 4 x B is the mul-
tiplication of the probability density functions associated with individual evidence.
That is,

Pindep(tt, V)= p (1) - pg(v). (3)

The above expression is a 2-D function forming a 2-D surface which should be re-
duced to 1-D form for the belief function of the conjunction result. Since these two
pieces of evidence are independent with each other, they are considered to be equally
important to the desired belief conjunction, Conj;,., i.., their contribution to the
final result is the same. Therefore, for a w, all of the density products pa(p) - pe(v).
where p -1 = w, should be atiributed to p,'.,,“l,{{.u]. The line g = v is called conjunc-
tion line, and the resulted pgep(w) can be considered to reside on this line by the

N " o
{H." o= U {1,1]
AH) }
B(l)
o+ V = (i
-
(0,0) ao U

Fig. 1. The independent case of the 2-D model.
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following calculations,

Pindep(‘*'} = Findt-p{l-'m 1":||w=,u+v

([ 24 2o =0 = [ 5y pat-)ar,

fosws 1, (6)
1

-

1p3{v} Py lw = v)de,

ifl<wg?,

where w = u 4+ v. Obviously, the range of w is [0,2]. Also note that u+ v =w is a
line perpendicular to the line g4 = v. The following probability conservation property
can be easily proved.

LEMMA 1.

2z
[ﬂ Pinseplw) doo = 1. %)

Proaf.

fﬂ zpindap(“-‘} dw

=Ej:m{#]-PB{w-ﬁ}dum+_[12'/:’]_1?1@)-?3{@*#}4#@
=/ 1 / ™ ooy of ' / ;pdu.}.pﬂ(u)am

1 1
= fn fn palplpg(v)duvdy
= 1.

Lemma 1 is to prove the conservative property of total belief amount in an inde-
pendent case of beliel conjunction. However, we are aware of the assumed range of
a belief function is [0,1]. Therefore, normalization of the conjuncted belief function
i necessary, This can be done by the following equation.

pkndr,piﬂ} = zpirdtp{w}ltu':u" (8)
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Case 2: Totally Dependent

This case includes two cases which are either A4 is totally dependent on B or B on A.
Here we only discuss the former case, because the latter is the same. Referring to
Figure 1, if A is totally dependent on B, then the resulting conjunction belief function
should be the same as the belief function of B. This indicates that the Conj,_ g(A4, B)
ie exactly the B, that ic, the conjunction line ie rotated to overlap the v-axic and the

ranye of w, which is the variable of the Conj,. 5(A, B), is [(L1]. On the other hand,
in the case of B depending on A, we will have the conjunction line overlapping the

g-axis, and the Conjgy (A, B) 5 cxactly the A, Therefore, we bave the following
F_;:;,ﬂ(&) = PE(E)- {9]

Ppmalf)=p4(0). (10)

The above cases 1 and 2 represent the extreme cases. The general case will lie
in between these extreme cases and can be computed as an interpolation of these
extreme cases according to the mutual dependency coefficients pr, pap and paa,
The result has been given in equation (4). The following conservation result can be
casily proved.

LEMMA 2.

1
jﬂ p{‘nnJ{A,B]{EJdE =1,

Proof.
1 1
/ﬂ Peania.my(0) 48 = p; .[:, Pineplf) df+

1 1
+ Pap fu Panp(P)dl+pg, A P a(?)dd

=P;'1+PAB‘I+FB,4'1
=1
Lemma 2 is to prove the conservative property of belief amount in a belief conjunc-

tion procedure containing three cases, totally independent, 4 depending on B, and
B depending on 4. Lemma 1 is a special case of Lemma 2 when pyg = pga = 0.

2.3, BELIEF COMBINATION

Beliel combination refers to the belief conjunction of several pieces of evidence
supporting the same goal hypothesis. Hau discussed in [5] a fact that the basic
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(L)
ORNOENO

I-'is. 2. Combinahon of three picess of avidence to support & hypothesis,

probability assignment method will introduce a conflict (An.A) in belief combination
because of the conjunction of evidence supporting the same hypothesis with different
degree of belief. Therefore, a conflict resolution approach is needed o achieve the
consistency of belief combination. By the theory of previous subsection, if both A
and B are supporting hypothesis C, then the belief density function shown on the
conjunction line is the belief function of C. Therefore, equations (4) to (10) can also
be applied to the combination of the two pieces of evidence, except that the two pieces
of evidence must support the same hypothesis. The deficiency and nonrobustness of
Dempster’s rule have been detailedly discussed in Hau's work [5]. However, both
Hau and Shafer ignored the vagueness of the dependency relationship between the
two pieces of evidence. The mutual dependency relationship of pieces of evidence
always introduces significant conflict in the reasoning result of an inference network.
This conflict is shown in Figures 2 and 3. Referring to Figure 2, if there are three
pieces of evidence, M, N, and K, supporting a hypothesis L, then in a sequential
rule-based system, two of them have to be combined first, and then the result is
combined with the third evidence. These two cases are shown in Figure 3.

EXAMPLE 1. Considering the two cases in Figure 3, which bave differemt structures,
Assume

Cr{M) = 0.98, Pl{M) = 0.99, Pxr = Py = 0.5,

Cr(N)=001, PN)=002,  py, =01,
Cr(K) =001, PUK)=099,  pgp =09

The inconsistent results of these two cases by Hau's method are tabulated in Ta-
ble L.

When compared with human's reasoning process, this kind of inconsistency is
unimaginable. From the assumption, evidence M is the strongest one to support the
hypothesis L, the other two pieces of evidence N and K arc less important than M.
According to Table 1, the resulting credibility of case 1 is more than twice of that
of case 2. On the contrary, the plausibility of case 1 is only half of that of case 2.
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Case 1:

Case 2

Fig. 3. Two different structures of combination of three pieces of evidence,

Table I, The results of Haus approach applicd 1o cascs of

Figure 3.

Crp By 1-PFlg
Case 1 LOGR03 0.012857 0.980239
Case 2 0.003064 0.033357 0.963579

These results indicate that Hau’s method is easily subject to the combination order
of the evidence, which is not consistent with the intuition of human reasoning, To
a human, if these three picces of evidence are given, a belief function associated
with L should be dominated by M, since the relative dependency ratios of N and K
indicate their less influence on L, and because K has a stronger dependency on M
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Fig. 4. An inference petwork for demonstrating the mutual dependency relationship between Ea
and Eq_.

than N, M should have the dominant influence on L. Therefore, we conclude that
the results given by Hau's method are not consistent with human reasoning.

The reason why the conflict appears in Example 1 is that the mutual dependency
relationship will propagate through the inference network by current belief combi-
nation and then influence the following belief combination. Therefore, let's consider
the situation that the pieces of evidence are arranged in a lattice-structured inference
network, as shown in Figure 4, two pieces of evidence E; and £5 are combined so
as 1o form an infermediate evidence E4, and then E3 and E4 are combined to support
the hypothesis H. Intermediate evidence means an evidence synthesized by the other
evidence, and has all the properties that a real evidence has. What have been given
are the mutual relationships among E,, E;, and E4. Therefore, before E5 and E4 are
combined, the relationship between E; and E, has to be determined. The following
information is assumed to be known before the belief combination is performed.

Pzt pn+pr, =1, patpate, =1 Patpatpy, =1,

where all p’s are known, and p;"s denote the dependency coefficients. The following
result can be proved.

DEPENDENCY PROPAGATION PROPOSITION. For the inference network shown
in Figure 4 and the above given information, the mutnal relationships of Es and E,
can be determined by the following equations

21z £

Puy=——"— py+———:p14
Piz + o P2+ £21
212 221
4] = — Y0 o — 4, 11
s P12+ Py # P13 + gag P4 (11)
Piz 22

ey o AR .
1 = o+ om la piz+pu T
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Proof. Using the vector notation of Section 2.2, let the dependency vectors o4,
i34, x3q denote the mutual dependency relationships between E; and E4, E; and
Ey4, E3 and Eg4, respectively,

ay = [pg, Pr1a par]:
au = [p,, Pu pal
ay = [py, P pas].

Since E4 18 the combination result of £y and F,, the following equation holds,

P12 £21
Ny = ———— -y + —] Oy
1z + fa1 Pz + P

which proves the proposition.

EXAMPLE 2. Given the same data as in Example 1, we use our method, ie.
equation (4) to (11), to process each combination in the two cases in Figure 3. The
final results are listed in Table IL

In Table II, it is obvious that both cases have almost the same credibility Cry and
plausibility Crz +©g, which means our model will not be seriously influenced by the
order of the belief combination compared with the result derived by Hau's modified
Dempster's rule, and meets the intuition of human reasoning. The conflict appearing
in Example 1 has been resolved by our model. Here we have introduced a vector
form for mutual dependency shown in (4) and the above dependency propagation
proposition, which tums out to be superior to the conventional scalar form for the
dependency between different pieces of evidence in resolving confiict caused by the
dependeney problem.

Table II. The results of proposed model applied to either
case of Figure 3.

Cryp. ar 1="Plg
Casze 1 0106148 (.879853 (L1399
Case 2 0.105937 0868451 0.025612

2.4, BELIEF FROPAGATION

Belief propagation refers to the aggregation of the uncertainty associated with the
evidence or fact to fire a rule and the uncertainty of the rule itself so as to deduce
the uncerainty of the goal hypothesis of the rule. Referring to Figure 5, given a
nule & P — @ and an evidence P, then we are interesied in exploring the belief
function of the conclusion @ supported by the evidence P, which is defined as the
belief propagation result of the evidence P and the rule H. Because it is impossible
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=)

Fig. 5. Representation of an inference rule R,

to obtain the exact beliel function of the consequent @ from the given evidence and
rle, what we can expect is an assessment of the maximum bound and minimum
bound of the belief function associated with . If an evidence A is covered by
another evidence B, ie, the information of 4 is contained in that of B, then we
denote their relationship by A C B. Using this notation, the relationship among the
maximum bound .y, the minimum bound iy, and & can be espressed as

Qrﬂlug Q g Qn:ﬂ.'l

Let pp_(f) be the belief function associated with the rule R and pe(#) be the
belief function associated with the evidence P. The conjunction of the rule and the
evidence is

(P—@QnP=(Pu@)nP
=(PNP)U@nNP)
=(@nNPFP)

The conjunction result (¢} N F) means the consequent @ holds when it is supported
by the antecedent P. Therefore, the belief function of this conjunction provides the
minimum bound of the belief function of Q, i.e., Qmin = (@ N P). This result meets
the definition which we have explored for the belief propagation. Therefore, by
applying the conjunction procedure of Section 2.2 to an evidence and a rule, we will
get the result of beliefl propagation. In other words, the belief function obtained by
the conjunction of the belief functions of the antecedent and the rule is actually the
minimum bound of the belief function of the consequent.

However, we are also interested in assessing the maximum bound of the belief
function of the consequent Q. Referring to [4] and [5], the smallest range of Q is
(PN Q) which can also be derived from basic logic operations. Hence, we conclude
that

sz(PnE]
=P—Q,

which implies the maximum bound of the belief function of ) is exactly the same as
the belief function of the given rule despite what the belief function of P is. In other
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words, if the maximum bound is employed as the belief propagation result, then the
uncertainty of the antecedent will not bave any influence on the belief propagation.
This is not true at all. Note that many researchers have proposed various approaches
to recover and assess the belief function of the consequent, and provided many
explanations to their methods, e.g., [4] and [5]. However, we are only interested in
the influence provided by the antecedent to the consequent which shows the degree of
the antecedent supporting the concequent. Henceforth, we adopt only the minimum
bound of the belicl function of the consequent in a belicl propagation procedure o
assess the uncertainty aggregation of belief propagation.

In propositional logic, the logic implication, A — ¢, can be synthesized by the
conjunction of other logic implications, for example, the rules 4 — B and B — C.
It is easy to derive the following ‘chaining syllogism’. Given two rules

Ri: A— B

Rz: B —C,

with the belief functions pg, (#) and pg,(F), respectively. The belief function pg,(#)
associated with the new rule, A3: A — C, is the conjunction of the two belief
functions, pg,(¢) and pg,(6).

1.5, AND/OR OPERATIONS

In an inference network, the function of each node is either AND or OR operation. In
order 1o analyze the uncertainty aggregation of an inference network, it is necessary
to consider these two operations for belief function. In Section 2.2, we mentioned
that the conjunction of two pieces of evidence are deemed as the AND operation of
the two pieces of evidence, which is described as Conj(4, B) = A n B. Therefore,
all of the theory of the belief conjunction given in Section 2.2 can be applied to the
AND operation,

An OR. operation for two pieces of evidence can be defined as Union(4, B) =
AU B. From basic logic theory, we know

AUB=A4+8-ANE,
which means the following equation holds,

Punionl®) = P4(6) + Pp(f) — Peog(®) (12)

where peosj(f) can be derived according to the model introduced in Section 2.2.
Since an inference network can be viewed as an AND/OR graph, if all of the evi-

dence, rules, and the mutual dependency relationships are given, the belief function

of the hypothesis can be derived by the proposed model. The procedure is first to
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perform the operations of low-level nodes and then gradually propagate towards the
root where the hypothesis resides. For a given inference network structure, we can
arbitrarily assign the AND/OR operation to each node. In the following, we use the
inference network structure of case 1 in Figure 3 to illustrate the computation of the
belief functions of the hypothesis under various configurations.

1. AND Nerwork: Suppose we are given the following rules and mutual dependency
relationchipst

R il (MAN)— G, pg(F)

Ry iE(GNK)— L. pg ()

a8 pu(8).  PglE)
and

Pry, where z,y=M,N,K,R), R;.

The above information shows that all of the nonterminal nodes are AND nodes. In
order to assess the uncertainty of the hypothesis, we apply the following procedure:
(1) Compute the belief conjunction of evidence M and N; (2) Apply the rule R, to
obtain the belief function of the intermediate evidence G; (3) Compute the conjunc-
tion of G and K in which the dependency propagation must be taken into account;
(4) Apply the rule R; to obtain the belief function of the hypothesis L.

2. OR Nerwork: If we are given the following rules, which are different from the
previous case, and the mutual dependency relationships:

Ry if M — G, pg(6)

Bz iff N— (G, pﬂzfﬂ}

Rs: if G— L, pg,(6)

Re if K — L, pg ()

PalB)  pp(6),  pp(B)
and

Pzys where o= M?N‘.l K: RI:RErRH: Rﬂ-

The above information shows that all of the nonterminal nodes are OR nodes. To
assess the belief function of the hypothesis L, we follow the following procedure:
(1) Apply rules B; and R; to evidence M and N, respectively, to obtain two belief
functions for the intermediate evidence G; (2) Use equation (10) to compute the
‘union’ of these two belief functions to produce the belief function of G; (3) Apply
rules By and R4 to evidence G and K, respectively, to obtain two belief functions
for the intermediate node L; (4) Compute the belief function of the hypothesis L by
the ‘union” operation in equation (10),
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3. Mixed AND/OR Network: It is also possible that both the AND and OR nodes
exist in an inference network. Assume the following information is given:

Ry if M — G, pg (0)

Ry if N — G, pg,(®)
Ryt i (GNK)— L, pg (8)

PM{EI}’ PN[.'E;J- pﬂ(ﬁ)'
and

pry, Where 2,y =M, N, K R, R;, Rs.

The above information shows that the node & is an OR node and the node L is an
AND node. We can employ the following procedure to assess the uncertainty of the
hypothesis: (1) Apply rules R and R; to evidence M and N, respectively, to obtain
two belief functions for the intermediate evidence G; (2) Compute the ‘union’ of
the these two belief functions to produce the belief function of &; (3) Compute the
conjunction of G and K; (4) Apply rule R; to the previous result and obtain the
belief function of the hypothesis L.

Note that for all belief conjunction, union, and propagation steps, the depen-
dency propagation must be taken into consideration so as to avoid any possible
conflict.

3. Simulation Examples

In this section, we use some examples to illustrate the theory and procedures of the
proposed evidential reasoning model presented in the previous sections.

EXAMPLE 3. There are two picces of evidence A and B supporting a hypothesis C.
Assume the property of A supporting C' is the more A4 is true, then the more C is
also true. However, if B has an opposite properly to that of A, and B is partially
dependent upon A with an degree 0.4, then what is the belief that A and B support C'?

We know that the properties of evidence A and B given in the above can not
be easily modeled by the basic probability assignment (BPA) method to be pro-
cessed by the Shafer—Dempster's rule. However, it can be handled by the proposed
model. First, we can assign a belief function to the evidence A based on its prop-
eny,

pL(0) =28
On the other hand, we can assign a belief function to the evidence H,

pg(f)=2-26.
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Following the procedure discussed in Sections 2.2 and 2.3, first, three dependency
coefficients must be computed. Since there is no information to indicate there
is a possibility that A depends upon B either partially or totally, we can assume
that

Phaa = 0.4, Pasp = 0.0, Plas = 0.6,

secondly, we calculate the p, . (), which can be deduced by equations (3), (4), (5),
and {6).

5
166* — 3—;#-". i< %
Puse(®) = 4 16 32 1
— —_— 3 —_ 5
3 166° + 5 €<l

Then, since A and B support the same hypothesis, we can apply (2} to get the overall
beliel function of hypothesis C, which is

%34.%52_%&3, ﬂiﬂﬂ%-
P0)=04p,0)+0Pwis® =1 16 4 43 3, i
'5"+EE—?E'+?H: Eﬁﬂ“‘;l

The graphs of belief functions, pa(#), pe(f), and pia.p(f) are shown, respectively,
in Figures 6, 7, and 8. The graph of the belief function pe(f) associated with the
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Fig. 6. Beliel function of the evidence 4 in Example 3.
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Fig. 7. Belief function of the evidence B in Example 3.
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Fig. 8. Belief function of the independent case for A and B in Example 3.
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Fig. 9. Belief function of the hypothesis C in Example 3.

hypothesis C is plotted in Figure 9. Referring to Figures 6-9, the curve of the belief
function pc(#) is dominated by the independent case of belief conjunction of the two
given evidence, which is in Figure 8, and the right hand side of the graph indicates
the perturbation provided by the B depending on A case, which is in Figure 6.
Therefore, the probability density distribution of the belief function pc meets what
the intuition of human reasoning expects.

EXAMPLE 4. Given an inference rule £ and evidence A and B, which are shown as
an inference network in Figure 10, we are going to assess the belief function of the
consequent supported by the two given evidence. Suppose that the node combining
Aand B is an OR node, which will constitule an intermediate evidence. The rule is

R: il(AORB) thenC,
where the beliel functions of evidence A and B, and the mutual dependency rela-
tionships between the evidence are the same as those given in Example 3, and the

beliel function of the rule B is

pr(®) =38,
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OR node

Fig. 10, The inference network of Example 4.

which is shown in Figure 11. We also assume that the rule R is independent of its
antecedent. In the following, we will derive the belief function of the consequent C'
by our model.

By the result of the previous example, we can draw a conclusion that the belief
function of the intermediate evidence D, which is an OR node, is

2_%&_1;92_,_15%331 ugﬂ:s;%,
Pp(B) = pu(O)+Ps()-Pans®) = " 4, " ug

- WA |
3Rt gl geisl

which is shown in Figure 12. Since the rule R is independent on any antecedent,
the dependency relationship between I and R must be

Ppr =0 Prp =0, Pindep = 1-
Here, for the sake of simplicity, we rewrite the belief function pp as the following

Fl(ﬂ}:

k| =

i<
Pp{ﬂ} =Pa (€) +p3{ﬂ'} = PAHE{H} =

(=
'

FE{E}, < ¢ L

pal = =

Then, according to the theory of belief conjunction given in Section 2.2, we can get
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Fig. 11. Belief function of the rule R in Example 4.
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Fig. 12. Belief function of the intermediate evidence D in Example 4.

1.00



168 CHUA-CHIN WANG AND HON-SON DON

the following equations,

[ Fiwpnto = wan ogwes,
1z " 1
Fi(plpg(w — p)dp+ f. i Fa(u)pglw — p)du, 3sw<l,
pelw)=4 ip 1 3
il =t [ e = 1S3

-

1
L f Fau)mgle = ) d TT)

-

which can be further derived to be
r—zl-ﬁl:&uﬁ-z-iwﬁ—.iu“+5{h3}, ugug_l.,
%{uumz- 432w + 56)—

-~ (e — 24 4 5 43007, Twgl,
%{12&&& ~ 432w + 56)—

Pc{"'"'}z 4 1
-"E(Swﬁ - 240" = 50 — 1103+

b | te

+600w? — 590w + 140), 1€wg

¥

1
7 (8 — 240 4 50 — 1306+

3
+600w? — 706w + 228), b

Then we have to normalize the above equation so that the belief region is again [0,1].

(1
E[mzaw“ ~ 15368° — 1608 + 800#%), 0g0g ;,

%{Dﬁﬂﬂﬂz— 17280 + 112) -
—%(1[1249‘ — 15366° + 1608" + 4806%), %g g < %

1
700 (960067 — 17286 + 112) -

pc(8) = § i
—E{mmﬂ — 15368° — 1600 — 17606°+
+48008% — 23608 + 280), %éﬂé i,
.;?(10249‘ — 15366° + 1608 — 20806+
+48000° — 28246 + 456), 3coch,
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Fig. 13. Belief function of the consequent © in Example 4.

which is shown in Figure 12. We can also check the conservation property of the
lasl equation,

f‘p (@)do = > 4 1860 2126 T2 _
TR T 1400 T 5600 5600 © 2800

The overall propagation result has been derived and the property of probability
conservation holds. The capability of the proposed model in managing the un-
cerfainty aggregation of complicated continuous belief functions of evidence and
inference rules in an inference network is illustrated in the above Example 4. If the
conventional BPA approach is adopted in this example, no matter what thresholds
are chosen to quantize the belief region, the fiedility of the original belief function
will be seriously distorted or even totally lost. In tumn, regardless of what kind of
beliel combination and belief propagation method is employed, it will lead to an
unfaithful belief function of the final hypothesis.

1.

4. Conclusion

Reasoning with uncertainty in a rule-based sysiem is considered the aggregation
of uncertain information about the validity of hypotheses from different sources.
Section 1 discussed the three types of belief aggregation; belief conjunction, belief
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combination, and belief propagation. However, since the belief combination and the
belief propagation are developed by the establishment of belief conjunction, they can
be deemed as special cases of belief conjunction, If Dempster’s rule [12] or Hau’s
approach [ 5] is adopted to perform the belief combination of the example provided in
Section 2, the conflict resulting from the structural dependency of a lattice-structured
inference network can not be satiefactorily resolved. In contrast, the proposed 2-D
model solve this conflict resolution problem. The result of belief propagation must
also depend on the mutual dependency relationship of the antecedent of the rule
and the rule itself, which has long been ignored in the literature, in addition to the
interpretation of the rule. The proposed model also embodies the inference in a
lamtice-erucred inference network. Since an inference network can be treated as
an AND/OR graph, the operation of any individual node (i.e., AND or OR) can
reach the final result by applying the 2-D model. If the node is AND, then it is
considered to be a Conj operation in the proposed model, while an OR node, then
Union operation.

The new model offers several advantages over the prior attempts. First, the conflict
in the dependency among the pieces of evidence in an inference network has been
solved. Secondly, the discrete belief functions and the arbitrary continuous belief
functions can be processed, which has not been researched to date. A continuous
belief function is extremely advantageous because it can represent the vagueness of
a human concept more accurately than the conventional means (i.e., BPA). Thirdly,
the problem of dependency propagation of an intermediate evidence has been re-
solved. Finally, the conflict of belief propagation caused by the mutual dependency
relationship of the antecedent of the rule and the rule itself has also been solved,
This newly proposed strategy is intuitively closer to the human reasoning process
than is Dempster’s consensus seeking strategy [11, 12] or Hau's compromise seeking
strategy [5], thus making this new model more successful and appealing than earlier
attempis.
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