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A low-cost quadrature decoder/counter interface integrated circuit for
AC induction motor server control

CHUA-CHIN WANG+ti, PO-MING LEEt, YI-LONG TSENGY and
CHI-FENG WU+t

An AC motor server control IC which performs the quadrature decoder, counter,
and bus interface function is presented in this paper. This interface IC employing
TSMC 0.6 pm SPTM technology has been fabricated and tested and the results
indicate that its function fully works. A novel noise filter logic is included in the
design which allows reliable operations in noisy environments. It also contains a
quadrature decoder such that the phase lag of an external clock and the input signal
can be determined.

1. Introduction

Although advanced microprocessors with higher computing capability and
execution speed are used in motor control (Tzou and Hsu 1997), certain interface
integrated circuits (ICs) are still required in the build-up of control systems
(Jahkonen ef al. 1991, Hoang 1994). Figure 1 shows the H/W architecture of an
AC induction motor motion controller is shown. A critical component of the motor
motion controller is the decoder/counter interface between the induction motor and
the DSP microprocessor. The function of this interface IC is to read the output
signals delivered from motor encoder, and then decode/count into a 16-bit data
which in turn is sent to the S/W controller, e.g. a digital signal processing (DSP)
processor, to compute the angle of the rotor of the induction motor. Several pro-
blems need to be resolved. First, the reduction or the removal of the noise since the
motor usually operates in such an imperfect environment. Second, the rotational
direction of the rotor must be determined. In prior designs for such an interface
(Chung 1995), a total of eight 74193s (4-bit counter), four 74373s (8-bit latch), and
certain noise filter and decoder (Hewlett Packard) are needed to achieve the required
functions. A large portion of board area is thus wasted. We have designed and
fabricated this interface chip and tested it by Integrated Measurement System
(IMS) testing equipment to verify its functions correctly. It turns out to be a simple
turn-key solution for such an interface.

2. AC induction motor control interface I1C

2.1.  Required functions

2.1.1. Digital noise filtering. Since motors are usually operating in noisy environ-
ments which might introduce unwanted digital noise in the encoder’s output owing
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Figure 1. The H/W architecture of an AC induction motor motion control.

to coupling or vibration, a digital noise filter is responsible for rejecting noise on
the incoming signals. There are two methods to improve noise rejections: Schmitt-
trigger inputs and a multi-clock-cycle delay filter which can be combined to reject
low-level noise and short-duration spike noise that typically occur in motor system
applications.

2.1.2. Quadrature decoder. The rotation direction of the rotor is important for
many applications. A decoder is required to decode the incoming filtered signals
into count information. This circuitry multiplies the resolution of the input signals
by a factor of four. When using an encoder for motion sensing, the user will bene-
fit from higher resolution by being able to provide a better control system.

2.1.3. Position counters. 16-bit counters which counts on rising clock edges are
needed. The system can utilize the counters in several ways. First, if the system
total range is less than 16-bit range, the count represents the absolute position of
the rotor. Second, if the system count is larger than 16-bit range, the count data
can be used as relative or incremental position input for a system S/W computa-
tion of absolute position.



Integrated circuit for AC induction motor server control 1055

2.2. Architecture of motor control interface I1C

The general spatial relationship of motor, control circuits, and the interface IC is
presented in figure 2. The entire design is named as counter10053 which consists of
two counter circuits, counter10051 and counter10052. The functions of counter10051
are to receive a pair of signals sent by the encoder of motor sensor, CHA and CHB,
and then quadratually decode them to determine the rotation direction of the motor.
The 16-bit counter of counter10051 records the position of motor which will be
passed to the motor indirect control circuit, e.g. a DSP processor. In contrast, the
functions of counter10052 are employed to receive the command signals of the motor
indirect control circuitry to generate the count up or count down signals to the
motor direct control circuitry, e.g. a motor driver. The 16-bit counter of coun-
ter10052 then records the destination position of the motor.

Besides the mentioned two major components, the proposed interfacing circuit
also contains certain glue logic, including inhibit logic, output drivers, and mode
selection MUXz. The schematic of entire counter10053 is shown in figure 3.
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Figure 2. General spatial relationship of motor, control circuit, and the interface IC.
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Figure 3. The schematic of entire counter10053.
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2.2.1. Internal circuits of counterl0051. The major function of counterl0051 is
to quadratually decode the pair of signals from the motor encoder and record the
position of motor. As shown in figure 4, it contains the following modules.

newfilter_500k. This filters out the noise that is over 500 kHz. The upper part of
figure 5 is used to divide the 10 MHz clock frequency to 5SMHz. After passing
through a Schmitt trigger buffer, the input signal is cleaned up which in turn is
passed to a five-bit delay filter. The filter is composed of five DFF, i.e. new_dff, a
NAND, a NOR, and an XOR such that the output of the XOR is 0 if all of the five
sampled data on DFFs are all Os or all 1s. Thus, when the O/P of XOR is 0, a new
signal will be generated. Otherwise, the old signal (last state) of the output will be
repeated again through the feedback loop at the DATAOUT of figure 5.

MSELO L d

BORROW
CARRY

]
5
8
e

BORROW
CARRY

71§-<] Q-QIs

e
CLK CLK  DATAOUT [1{10 DATAOUT [— \\gtk
CLR CLR H1
INE o —H| pAaTAN PN
newfilter_500k mux2
cmD——ﬂ»—Do—«Do—o
®{CLK  DATAOUT [—1{ 10 DATAOUT
L) ¢ CLR
1 DATAIN
newfilter_S00k

cus—

ABCD

BORROWIM
CARRYIM

ck [

azx>

o Cr DATAOUT | & CLR DATAOUT

o/ | ax CLK

[ 4
DATAIN -1 DATAN o T DATAN . .

qar DATAOUT |- CLR DATAOUT L ar DATAOUT 1
L cx CLK H cx
DATAIN
new_dff DATAIN new_dff DATAIN new_dff

Figure 5.

The schematic of newfilter_500k.
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ABCD. Referring to figure 6, this circuit stores the values on CHA and CHB in two
consecutive clocks, which are provided to the oldmethod block to determine the
rotation direction of the motor.

oldmethod. Based on the signals delivered from ABCD module, the circuit shown
in figure 7 decodes them and provides the count up or count down information.

(1) If the sequence of (CHA CHB) is (00) — (01) — (11) — (10) — (00), the
motor rotates counter clockwise (i.e. reversely). The output is countdown
=0 and countup =1

(2) If the sequence of (CHA CHB) is (00) — (10) — (11) — (01) — (00), the
motor rotates clockwise. The output is countdown = 1 and countup = 0.

newtest. The module shown in figure 8 consists of 16 toggle flip-flops (TFF), two
NORs, and two NANDs. In fact, it is a 16-bit positive edge-triggered counter.
Notably, in order not to misjudge the signals sent from the oldmethod module
during the initialization of the chip, a filter circuit is inserted at the inputs. The filter
circuits locks the countup and countdown in the first two clock cycles after the reset
or initialization. The 16-bit counter, thus, starts to count after two cycles.

output & output buffer. Referring to figure 9, the high impedance output is achieved
by driving the PMOS of output pad by logic 1 and the NMOS by logic 0. Thus, these
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driving signals have to be split before arriving at the pad. The splitting of the driving
signals is controlled by L0’ at logic 1. Note that the L/W ratios of the output buffers

are tuned to be able to drive the pre8h cell (an inverter to drive a pad) provided by
CIC.

DATAQOUT

Figure 10. The schematic of new_dff.

Figure 11. The layout of the proposed interface IC.
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Figure 12. The HSPICE simulation results.
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2.2.2. Internal circuits of counter10052. The design of counter10052 is similar to
that of counter10051 except that filter module, newfilter_1m, is different from the
filter employed in counter10051. ‘newfilter_1m’ is tuned to filter out any noise over
1 MHz frequency.

2.2.3. Special cells for motor applications. In order to consume less chip area, the
DFF and TFF required in the above circuits are re-designed. We give up the static
CMOS style. In contrast, we adopt a CPL-like design to develop a new_dff as
shown in figure 10. A total of 14 transistors are used in the proposed new_dff,
while 36 transistors are needed if a traditional DFF design is used. Similarly, a
new_tff is also proposed to replace the traditional TFF.

3. HSPICE simulation and chip testing

The entire chip is custom designed with TSMC 0.6 pm SPTM technology. The
layout is shown in figure 11. Before the layout was signed off, we had simulated the
chip with HSPICE. The result is illustrated in figure 12 which shows that the func-
tion is correct in any case. This chip was fabricated through the help of CIC and
TSMC. The IC number in CIC is T06-87B-04e. The chip area is 1.8 x 1.8 mm?.

The chip in the DIP package then was tested by the IMS (Integrated
Measurement System) of National Cheng-Kung University. The results are shown
in figures 13 and figure 14. Figure 13 indicates that the expected vector is identical to
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Figure 15. The die photo of the proposed interface IC.
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the outputs of the chip. We thus conclude that the function of the design fully works.
Figure 14 shows the testing parameters. The major delay stems from the pads which
introduce about 8 to 10ns delay. However, the operating clock frequency is still
adequate for normal motor operations. Figure 15 is the die photograph of the
physical chip.

4. Conclusion

We propose a novel design for the motor server control interface in which the
quadrature decoder, the counter, and the bus interface functions are all integrated in
a chip. The areas of the proposed design turn out to be less than those of another
chip which contains identical functions, HCTL-2020. The chip has also been tested
by Philips Semiconductor Ltd. (Taiwan) and the results turn out to be very appeal-
ing.
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