VI.SI DESIN

2000, Vol. 11, No. 4, pp. 331338

Reprints available directly from the publisher
Photocopying permitted by license only

19 2000 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science

Publishers imprint.

Printed in Malaysia.

Design and Analysis of Radix-8/4/2 64b/32b Integer
Divider Using COMPASS Cell Library*

CHUA-CHIN WANG', CHENN-JUNG HUANG and I-YEN CHANG

Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424

(Received 5 June 1999; In final form 24 September 1999)

A high speed 64b/32b integer divider employing digit-recurrence division method and
the on-the-fly conversion algorithm, wherein a fast nosmalizer is included, which is used
as the pre-processor of the proposed integer divider. For the sake of enhancing
throughput rate, the proposed divider uses a mixed radix-8/4/2 division instead of the
traditional radix-2 division. On-the-fly remainder adjustment is also realized in the
converter module of the divider. The entire design is written in Verilog HDL (hardware
description language) employing COMPASS 0.6 um 1P3M cell library (V3.0), and then
synthesized by SYNOPSYS. The simulation results indicate that our design is a better

option than the existing long divider designs.

Keywords: Integer divider; On-the-fly conversion; Fast normalizer

1. INTRODUCTION

Integer division is a critical operation in the CPU
design, since the number of clock cycles to com-
plete an integer is probably very long and unpre-
dictable [1-3]. The role of division is becoming
more and more critical owing to the require-
ment of signed computer arithmetic, the modulus
computation, the calcylation of encryption
keys, and so on. Division algorithms can be
roughly classified into two categories: namely,
digit-recurrence methods [4,5], and functional
iteration techniques [4,6], while the former is

commonly used. Regarding the digit-recurrence
method, traditionally there are two types of
division schemes, i.e., restoring and non-restoring
schemes. However, they both require muitiple
operation steps to derive a quotient bit. Not only
is the efficiency drastically poor, but also a long
adder/subtracter is needed to execute the re-
mainder bit adjustment. These difficulties lead to
the degradation of the entire microprocessor.
Although high-radix division algorithm has been
proposed to overcome the mentioned problems
{5,7], there are a few things left unsolved. First,
how to efficiently normalize the dividend and the

*This research was partially supported by National Science Council under grant NSC 88-2219-E-110-001.
!Corresponding author. Tel.: 886-7-525-2000 ext. 4144, Fax: 886-7-5254199, ¢-mail: cewang(@ee.nsysu.edu, tw

331

332 C.-C. WANG et al.

divisor. Second, how to correctly adjust the final
quotient and remainder without paying too many
H/W overheads. In addition, though many re-
search works has been proposed to either enhance
the speed or the throughput [4-6], [8—10], the
real hardware realization of a long divider is still
a challenging task. The difficulties involved in
the hardware realization include how to meet the
minimal clock period, how to rapidly normalize
given data words, how to control the operation
sequence of different modules such that no racing
problem occurs, and so on.

In this work, we thoroughly complete the VLSI
implementation of a long 64b/32b signed integer
divider wherein a pipelined fast normalizer, radix-
8/4/2 digit-recurrence algorithm, and on-the-fly
conversion method [6]. The proposed design meth-
odology can also be applied to a longer divider,
c.g., 128b/64b signed integer divider. All of
these works are physically implemented by using
Verilog code integrated with COMPASS 0.6 um
1P3M cell library in the Cadence cadtool environ-
ment. The simulation results show that our design
is better than the existing long divider designs.

2. CELL-BASED DESIGN OF 64B/32B
SIGNED INTEGER DIVIDER

2.1. Digit-recurrence Theory

Assume x, d, ¢, rem to be the dividend, the divisor,
the quotient, and the remainder in the division
operation. We also denote the radix of the division
is r. Define a residual (partial remainder) w so that
in the jth step of division is

wlj]=r/(x—d - qlj]). n

According to [5], the digit-recurrence algorithm is
described as follows:

e One digital arithmetic left-shift of w[j] to
produce r- w[/] except the first step;

e Determination of the quotient digit g;, , by the
quotient-digit selection function;

e Generation of the divisor multiple d- ¢, 1;
¢ Subtraction of d-¢;,, from r-w{j],

where
—d <wljl<d. (2)

_ wln] - r " if win]>0
rem = { (win + d) - if win<0.)

Figure 1 shows the data flow of a division step.
Although the above algorithm has been well

written in literature [5], the following unsolved

problems still appear during the implementation:

(a) Fast normalization of the dividend and the
divider is ignored.

(b) A long adder is needed at the adjustment of
the remainder.

(c) Extra adjustment actions are required when
the last cycle of the division contains non-
multiple digits of the radix.

b
|

Shifter

rewfi+]
Quotient-digit selection |
function ¢

i1 I_d_

J

1 .
’ Multiplier]- J

Subtraction i
_

W)
|

FIGURE 1 The data flow of a division step.

FAST NORMALIZER 333

(d) The adjustment of the remainder is missing
when the signed division is executed.

(e) A data flow control unit is required, which
provides correct timing control such that the
results of the division can be correctly placed
on the output ports.

In short, the above problems will occur during
the realization of a long signed divider. If these
problems are not resolved efficiently, the hardware
divider will be large and slow.

2.2. Design of the 64b/32b Signed/Unsigned
Integer Divider

In this work, we present an improved design of a
64b/32b signed/unsigned integer divider, where
the long ignored implementation problems men-
tioned above are all resolved. The key design issues
of our integer divider are enumerated as follows:

2.2.1. Fast Normalizer

Binary data normalizer is one of the major time
bottlenecks in dividers [5, 6]. If the sequential style
of normalizers is used, the average time for a
dividend or divisor normalization will be very
long. The task of normalizer is to find the bit
position of the first leading *“1”* of the given binary
data. Since the data is unknown, the worst case of
the time complexity will be O(N), [8, 9]. From the
viewpoint of data flow, the combinational design
will be faster than the sequential design. Hence, we
adopt a fast and scalable design methodology to
normalize the binary data with the time expense =~
O(log N).

Assume the length of the data word is N, which
is the power of 2. The entire word is divided into
subwords with the length n, which is also the
power of 2. Hence, the number of subwords is N/n.
We can utilize modified priority encoders to locate
the leading “1” in a subword.

The bit position of the leading 1" can be detect-
ed by an n-bit priority encoder (PE). The output of
the PE is the binary representation of the position of

the leading **1” in the subword. The length of the
output representation is, then, k= [log, n]. The
function table of the PE is shown in Table I:

We still can not figure out where the global
leading “1” is at this stage, even though the
respective leading “1”" is known in each subword.
A total of N/n n-input OR gates and another PE,
called the high-level PE, are required to generate
the select signals telling which subword the lead-
ing 1" is located. This high-level PE and the PEs
used in the subwords are arranged in a hierarchi-
cal format. The output of the high-level PE is
the selection signals of a total of k N/n-way-to-1
MUXs. The architecture of the entire fast normal-
izer is shown in Figure 2 where N =64, and n=4.
Notably, the outputs of these PEs are utilized for
two tasks:

(1) computing the required number of cycles
to generate the correct quotient and the
remainder;

(2) instructing a barrel shifter to shift the original
data word properly.

TABLE 1 The function table of the priority encoder (PE)

Input (# bits) Output (k bit) Decimal notation
IXXX.. . X 11...11 0
01XX...X 11...10 1
001X...X 11...01 2
000....0X 00..00 el

Ll

’i. 12 1 fe {3 f2 |1 }o
"] X3 irL_l
s +4to1 4(01[‘.{4101‘f
Y:I MUX | MUX = MUX
= :
S5 84 83 v

E! nr;in tREN|

FIGURE 2 The architecture of fast normalizer (N =64,
n=4).

334 C.-C. WANG et al.

2.2.2. Radix-8 Division with Radix-4
and Radix-2 Selection Functions

The next problem that we like to resolve is the
redundant step occurring at the last step of the
division. Since the radix-8 is used in the division,
there is a possibility that the last stage of division
has only one or two bits left in the dividend to be
processed. If only one radix-8 selection function [5]
is used at this stage, an extra adjustment step will
be needed to correct the result. This introduces
additional delays and hardware cost, e.g., long
adders. We thus integrate the radix-4 and radix-2
selection functions in the division to overcome
this difficulty. The control unit will monitor the
number of bits to be computed in the fixed-point
quotient. The radix-4 division will be executed
at the last stage when the number of bits to be
computed in the fixed-point quotient is two,
whereas the radix-2 division will be executed when
the number of bits left in the quotient is one.
Moreover, in our design we can take advantage of
that the positions of leading “1” in the dividend
and the divider can be detected in the normalizer
such that the total number of division steps is well
determined before the iterative digit-recurrence
mechanism.

2.2.3. Radix-8 (High Radix) Quotient
Selection Function Table

It can be shown that the residual is computed
basing on the following equality.

wii+ 1] =r-wlj]—D ¢ 4)

where g, is the quotient bits generated at step
j+1, ris the radix. Meanwhile, the residual must
be bounded, — D < w[j]< D. Thus, we tend to
utilize a table look-up method to realize such a
function,

gir1 = SEL(w[j]. D) (5)

The SEL(:) in the above function is called

“quotient selection function™ [5].

2.2.4. Hardware Consideration of Signed Division

Notably, the sign of the remainder should be the
same as that of the dividend. This results in an
adjustment problem of the remainder at the last
stage of the division. Usually a full wordlength
adder is required to handle this problem. In our
design, both the dividend and the divider are
converted into positive numbers before the nor-
malization. Their sign information is then kept
and used to select the result generated by the 37-b
carry save adder (CSA) for the remainder adjust-
ment. This will simplify the entire design and have
not loss regarding speed.

2.2.5. Data Flow Control Unit

Our cell-based design for the 64b/32b signed/
unsigned integer divider is given in Figure 3. The
detailed flow control is described as follows:

(1) Convert the dividend and the divider into
positive numbers. Then use the fast normalizer
to execute the normalization.

(2) Compute the required cycles for radix-8, radix-
4, and radix-2 division by the positions of the
leading 1" of the dividend and the divider
which can be generated by the normalizer.

(3) In cach radix-8 division cycle, use the radix-8
selection function to generate 3 bits for the
quotient.

(4) In the radix-4 (radix-2) division cycle, use the

radix-4 (radix-2) selection function to generate

the remaining bit(s) for the quotient.

A radix-8/4/2 on-the-fly converter is used to

generate the quotient and avoid any possible

carry ripple. This converter is controlled by
multiplexers such that it can be used by the
radix-8, radix-4 and radix-2 selection functions.

(6) Use a carry-save adder to filter out the carry

ripple produced in every quotient generation

step. Notably, the error will be absorbed in the
next usage of the selection function.

The last stage is to adjust the remainder by a

fast adder, whose bit length is 64 + logsr + 1 =

68. Meanwhile the barrel shifter in the normal-

izer is used to produce the final remainder.

(&

=

7

—

FAST NORMALIZER

q 33£|

remainder

divisor d
32 divi
ividend x o
32 bitd 36 bit WC 72 bit WS
T - welj] r = ws[j]
// 32d 8,
4 8 » i
v~ 73
yd
7
8 bit CPA 36
~~ 2
3~ z
4
-8 o 6
. gh
36bit MUX [,
ah - d Radix 8 Quotient Radix 4 Quotient Radix 2 Quotient
Selection Selection Selection
Function Table Function Table Function Table
obieMUX | 9 (L { 1'
—
-ql ~d J l ¥
ya
736
37 bit CSA
6y /
32d iy
36 p /]
4]
y r---“—‘-—'—“-n
' '
' ' .
' t CSA
34 bit On-the-Fly Conversion ' Remainder Generator | 376 C
' . 37
S ! w1l wsli+lF A

736

FIGURE 3 The design architecture of the 64b/32b signed/unsigned integer divider.

335

336 C.-C. WANG et al.

3. SIMULATION AND ANALYSIS

In order to compare with currently available
design methodologies for long integer dividers,
we use the Verilog HDL incorporated with
COMPASS 0.6 um 1P3M cell library (version 3.0)
to synthesize the 64b/32b signed/unsigned divider
by SYNOPSYS. Figure 4 shows the circuit lay-
out of the integer divider, while the synthesis
results of every submodule is given in Table II. We
also use the TimeMill to execute the full-chip:scale
post-layout simulation. The test patterns produced

by the Verilog behavioral code are fed into
TimeMill to test under different clock rates.

At this stage, we find that the chip functions
correctly up to a 66 MHz clock.

For the sake of realizing the performance
improvement of the proposed design in the long
integer division, we compare our work with
currently available CPUs’ integer divider, in-
cluding [2,3], to present the superior design
of our divider chip, as shown in Table III. Note
that the entry in Table III is the number of clock
cycles.

chdd
Sod

CORNER

= o
IS g Lﬁi
O O
E A | =
g o O
cHd@d
[}
G

CORNER

FIGURE 4 The circuit layout of the integer divider.

FAST NORMALIZER 337
TABLE II Synthesis results of every submodule of the chip by SYNOPSYS

Component Area (cell unit) Area percent Max delay
Pre-process module 1033.29 5.9291% 447ns
Next step module 3063.85 17.5808% 6.73ns
WS WC module 2679:38 15.3746% 4.93ns
Selection function module 970.66 5.5698% 7.78ns
qdh and qdl module 2122.26 12.1778% 1.24ns
Quotient module 2489.78 14.2867% 481 ns
Remainder module 2751.53 15.8231% 16.07 ns
Control component 166.39 0.9548% 4.30ns
Input buffer 1093.76 6.2762% 2.66ns
Output buffer and test module 1050.35 6.0271% 4.14ns
Total 17468.76 100.00000%

TABLE III Cycle-based performance comparison of 64b/32b integer dividers

Pentium

Cyrix 6 x 86MX

Radix-4/2 divider [11] QOur divider

42-4
(longest - shortest)

Integer division 45-13

(longest —shortest)

23-3
(longest — shortest)

18-3
(longest —shortest)

4. CONCLUSION

In this work we present an improved design of a
64b/32b signed/unsigned integer divider. Not only
we show the feasibility of using the mixed radix-8/
4/2 method, those long ignored implementation
problems are also resolved. The simulation results
indicate that our design is a better option than the
existing long divider designs. Notably, this design
can be integrated in the ALU unit of a 64-bit
MiCTrOprocessor.

References

[1] **Pentium Pro Family Developer’s Manual”, Intel, 1996.
[2] Gwennap, L., “Intel's P6 uses decoupled superscaler
design”, Microprocessor Report, 9(2), Feb., 1995.
Gwennap, L., “Klamath extends P6 family”, Micropro-
cessor Report, 11(2), Feb., 1997.

Bashagha, A. E. and Ibeahim, M. K., “Two’s complement
high radix division™, 1997 IEEE Inter. Symp. on Circuits &
Systems (ISCAS'97), pp. 20882091, Hong Kong, June,
1996.

Ercegovac, M. D. and Lang, T., “Division and square
root — digit-recurrence algorithms and implementations”,
Reading: Kluwer Academic Publishers, 1994,

Hwang, K., “Computer arithmetic: principles, architec-
tures, and designs”, Reading: John Wiley & Sons, 1979.

B3

[4]

(s

6

=

[7] Ercegovac, M. D., Lang, T. and Montuschi, P., “Very-
high radix division with prescaling and selection by
rouding”, IEEE Trans. on Computers, 43(6), 909-917,
Aug., 1994,

Cavanagh, J. F., “Digital computer arithmetic”, McGraw-

Hill, Inc., 1984.

[91 Hayes, J. P., “Computer architecture and organization™,
McGraw-Hill, Inc., 1988.

[10] Sirnivas, H. R. and Parhi, K. K., “A fast radix-4 division
algorithm®, IEEE Inter. Symp. on Computer Arithmetic,
pp- 311-314, Santa Monica, 1994.

[11] Wang, C.-C., Huang, C.-J., Lin, G.-C. and Wu, C.-F., “A
chip design of Radix-4/2 64b/32b signed/unsigned integer
divider using Compass cell library”, 1999 JEEE Inter.
Symp. on Circuits and System, 1, 439442, June, 1999.

(8

Authors’ Biographies

Chua-Chin Wang was born in Taiwan, in 1962. He
received the B.S. degree in electrical engineering
from National Taiwan University, Taiwan, in 1984
and the M.S. and Ph.D. degrees in electrical
engineering from State University of New York,
Stony Brook, in 1988 and 1992, respectively.
Currently he is a Professor in the Department of
Electrical Engineering, National Sun Yat-Sen
University, Taiwan. His research interests include
low-power logic and circuit design, VLSI design,
and neural networks and implementations.

338 C.-C. WANG et al.

Chenn-Jung Huang was born in Hualien, Tai-
wan, in 1961. He received the B.S. degree in
electrical engineering from National Taiwan Uni-
versity, Taiwan, in 1984 and the M.S. degree in
computer science from University of Southern
California, Los Angeles, in 1987. He is currently
completing requirements for the Ph.D. degree in
electrical engineering at National Sun Yat-Sen
University, Taiwan. His research interests are

computer arithmetic, computer communication
networks, and neural networks.

I-Yen Chang was born in Taiwan, in 1975. He
received the B.S. degree in information engineering
from Chung Yuan Christian University, Taiwan,
in 1997 and the M.S. degree in electrical engi-
neering from National Sun Yat-Sen University,
Taiwan, in 1999. His research interests include
VLSI design and computer arithmetic.

