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This investigation demonstrates the analysis of various layout arrangements for oscillator
(OSC) realized by CMOS technologies. Moreover, the analysis reveals that the serpentine
style of OSC stages attains the minimum output variation on silicon. This investigation is
firstly verified by post-layout simulations, comparing the variation with different kinds of layout
arrangement for OSC designs, including serpentine layout style, straight layout style, and
staggered layout style, etc. The proposed design is then realized using 0.18 µm process to justify
the performance, where a straight line layout style and a serpentine layout style of OSC are
physically fabricated on the same die. Besides, the on-silicon measurement is conducted to give
the comparison for these two different styles of OSC designs. The proposed serpentine layout
style attains the lowest layout variation when the variations are not homogeneous in different
directions on the same silicon plane.

1 Introduction

Thanks to the advancement of CMOS semiconductor technolo-
gies, transistors as well as other passive devices are downsized
constantly and rapidly. Under the continuous shrinking of nano-
meter manufacturing process, 180 nm, 90 nm, 40 nm, 28 nm, and
even 16 nm, manufacturing variations on wafer become a serious
threat to the functionality of logic devices. However, The reason
is no matter what process is used, it is suffered from various envi-
ronmental factors [1]-[14], e.g., voltage, temperature, power surge,
process variations, etc. In addition to the environmental factors, the
impact of the layout parasitic and arrangement is also an important
issue for IC design [15]-[17]. Oscillator (OSC) is one of the major
components of digital circuits, which is usually used as the clock
generator.

2 Literature Survey

This investigation explores what kind of layout arrangement of
OSCs composed of many identical delay stages will attains the best
robustness to the variations caused by manufacturing on wafers.
The theoretical analysis was verified not only by simulation results,
but also physical measurement. In prior works, the measurement

results were much worse than the post-layout simulation results
mainly due to lack of layout style analysis [18]-[20], and the worst
frequency drift is about 0.2 GHz from 1 GHz-3 GHz in these works.
Notably, many prior digital circuit design reports never gave details
of their clock or OSC generator layout, e.g., [21]-[24]. To keep the
simulation conditions consistent for different layout arrangement of
OSCs, all OSCs are realized using the same 64 inverters for various
8 × 8 and 1 × 64 combinations in this investigation. Besides, to
verify as many possibilities as possible, this investigation demon-
strates the analysis of 7 layout arrangements of OSCs by post-layout
simulations with full RC extract and Monte Carlo simulation results.
Though the layout arrangements look similar for 7 layout arrange-
ments of OSCs, the wiring length between buffers in these cases are
not identical. This investigation analytically computes the overall
wiring length to predict the RC impact and the variation effect in
the different layout styles.

3 Layout Variation Analysis of Oscillator
Designs

Figure 1 shows the architecture of a typical differential oscillator.
It consists of a Driving Buffer, two 64-to-1 MUX arrays, 64 delay
stages, and a Decoder to select the desired frequency. Although
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Figure 1: The architecture of the illustrative OSC with 64 delay stages

voltage variation, temperature variation, and process variation are
usually considered by chip designers, there are still other variations
caused by layout styles. Typical process variation on wafer are
usually caused by the non-uniform and linearly degradation doping
concentrations of chemical substances. Assume that the variation,
PA(0,0), at the origin A(0,0) has the minimum variation c. We then
define the variation amount along the x axis for each buffer stage
is ”a”, and the variation along y axis is ”b” without the loss of
robustness. In other words, the variation is assumed to be a linear
function against the distance. And the variation amount is different
in different directions on the same die (plane). For example: B(i,j)
delay stage has variation PB(i,j) as follows.

PB(i, j) = a · i + b · j + c (1)

• In the case of a straight line arrangement layout of OSC in
Figure 2, the total variation Ptotal1(i, j) is found as:

64∑
i=1

1∑
j=1

Ptotal1(i, j)

=

64∑
i=1

1∑
j=1

(a · i + b · j + c)

=2080 · a + 64 · b + 64 · c

(2)

Average of variation Ptotalaverage1(i, j) is:

Ptotalaverage1(i, j) = 32.5 · a + b + c (3)

buf1 buf2 buf3 buf4 buf64buf62buf61 buf63

Figure 2: Straight line layout style of OSC

Notably, buf# (# = 1-64) stands for inverter-based buffers.

• In Figure 3, in the case of a serpentine layout style of OSC,
the total variation Ptotal2(i, j) is:

8∑
i=1

8∑
j=1

Ptotal2(i, j)

=

8∑
i=1

8∑
j=1

(a · i + b · j + c)

=288 · a + 288 · b + 64 · c

(4)

Average of variation Ptotalaverage2(i, j) is:

Ptotalaverage2(i, j) = 4.5 · a + 4.5 · b + c (5)

buf1 buf2 buf3 buf4 buf5 buf6 buf7 buf8

buf16 buf15 buf14 buf13 buf12 buf11 buf10 buf9

buf17 buf18 buf19 buf20 buf21 buf22 buf23 buf24

buf32 buf31 buf30 buf29 buf28 buf27 buf26 buf25
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buf41 buf42 buf43 buf44 buf45 buf46 buf47 buf48

buf56 buf55 buf54 buf53 buf52 buf51 buf50 buf49

buf57 buf58 buf59 buf60 buf61 buf62 buf63 buf64

Figure 3: Serpentine layout style of OSC
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Based on Eqn. (2) and (4), we make a conclusive derivation as
follows.

Ptotal1(i, j) ≥ Ptotal2(i, j)

⇒2080 · a + 64 · b + 64 · c ≥ 288 · a + 288 · b + 64 · c

⇒8 · a ≥ b

(6)

Thus, the variation of the serpentine style is better than straight
arrangement when ”a” is more than or equal to one eighth of ”b”.
This implies that if the variations in different directions are not equal,
the serpentine layout style attains the better resistance to overall
variations on wafer. This fact was never reported before in any prior
work analytically. Notably, the similar analytic approach is applied
to other layout styles as those described in the following text.

4 Results and Discussion

4.1 Simulation and Verification

In order to verify as many possibilities as possible before physi-
cal realization on silicon, this investigation demonstrates 7 layout

arrangements of OSCs as shown in Figure 4, where various arrange-
ments and post-layout simulations with RC extract of OSCs are
demonstrated. Given that the central frequency of a 64-stage OSC is
100 MHz by pre-layout simulations, it is assumed that the parasitic
variation is ignored. A total of 7 different layout arrangements are
shown in Figure 4, namely A, B, C, D, E, F, and G. These styles are
briefly described as follows.

A. common centroid + even-odd stage interleaved
B. common centroid in 2 directions diagonally
C. circle to the center
D. serpentine
E. line by line
F. 2-line circle to the center
G. straight line

The post-layout simulation of serpentine layout style shows
the closest result to 100 MHz. Besides, the error between the
serpentine layout style and pre-layout simulation is only 1.9%. In
short, the serpentine layout style is the best arrangement proved by
this post-layout simulation result.

Because of the limit of chip size and budget, we are only allowed
to carry out the serpentine layout style and straight layout style on
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38.5 x 10.75 um
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F.  97.3 MHz
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Figure 4: Various arrangements and the clock rates of OSC by post-layout simulations
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(b) The MC simulation histogram  
of straight line layout style of OSC

(a) The MC simulation histogram 
of  serpentine layout style of  OSC

μ=100.644 MHz μ=102.109 MHz 

Figure 5: (a) The Monte Carlo simulation histogram of serpentine layout style of OSC; (b) The Monte Carlo simulation histogram of straight line layout style of OSC (MC
times=1000)

Table 1: Comparison with prior works.

MWCL[21] VLSI[22] JSSC[23] JSSC[24] this work
Year 2017 2019 2019 2021 2022

VDD (V) 1 0.8 1.2 1 3.3
Layout arrangement straight straight straight straight serpentine straight

Layout variation N/A N/A N/A N/A Yes
Accuracy N/A N/A N/A N/A 95.5% 88.7%

Frequency range 1 MHz 3.2 GHz-4 GHz 2.1 GHz-3.1 GHz 3.6 GHz-3.6175 GHz 20 MHz-180 MHz
Bandwidth 10 MHz 10 MHz 10 MHz 100 MHz 100 MHz

Adjustable frequency Yes Yes Yes Yes Yes
Chip Area (mm2) 0.75 1 0.25 0.00525 1.3

Chip Area
1.775 2.36 0.6 0.108 0.4(Normalization)

(10−4 mm2)
FOM 8.8 2820 11888 15700 12100, 23606∆

FOM =
(

Frequency range · Bandwidth
VDD · Normalized Chip Area

)
∆ This FOM is counted only by the area of the serpentine style.

silicon. Their areas are 10.6 × 40.8 µm2 (serpentine) and 38.5 ×
10.75 µm2 (straight line), respectively. Figure 5 shows the Monte
Carlo simulation results of two different layout styles to verify the
reliability, respectively. As shown in Figure 5, the central frequency
of serpentine layout style is closer to 100 MHz, which is set to be
the central frequency of this investigation.
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Figure 6: (a) OSC layout; (b) OSC die photo
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Figure 7: The enlarged layout style of OSC (a) serpentine style; (b) straight line style

4.2 Measurement and Performance Comparison

To verify the previous analysis, the proposed OSC designs are
realized using TSMC 180 nm CMOS process. The layout and die
photo of the OSCs are shown in Figure 6 (a) and (b), respectively,
where the total chip area is 1.063 × 1.063 mm2, and the core area
is 989 × 344 µm2. Notably, there are 2 OSC designs (straight line,
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Figure 8: Measurement setup and equipment

serpentine) on the same die. The detailed layouts of the mentioned
OSCs are enlarged in Figure 7. To highlight the influences from the
different layout styles, the space between any two adjacent stages in
Figure 7 is the same. The chip measurement setup is shown in Fig-
ure 8. The chip is soldered on the PCB to reduce noise interference.
The Agilent E3631A Power Supply provides the required voltages
and enable signals to the chip. Arbitrary waveform generator Ag-
ilent 33522A provide the 6-bit selection code. The oscilloscope
WaveRunner610Zi is used to observe waveforms and monitor the
circuit operations.
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95.5 MHz

38.5 x 10.75 um

10.6 x 40.8 um

(a) The block diagram of

serpentine layout style of OSC

(b) The block diagram of straight

line layout style of OSC
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Figure 9: (a) The block diagram of serpentine layout style of OSC; (b) The block
diagram of straight line layout style of OSC

Figure 9 shows the block diagrams of serpentine layout style
and straight line layout style of OSCs in Figure 6 and 7. Figure 10
(a), (b) show the measurement waveforms of these 2 layout styles,

respectively. By comparing the pre-layout simulation (100 MHz)
with the measurement results, the deviations of serpentine layout
style and straight line layout style of OSCs are 4.5% and 11.3%,
respectively.

(a)

central frequency=95.5 MHz

central frequency=88.7 MHz

(b)

Figure 10: (a) The measurement waveform of central frequency of serpentine layout
style; (b) The measurement waveform of central frequency of straight layout style

To verify the selectability of OSCs, Figure 11 shows the com-
parison of pre-layout simulation, post-layout simulation, and the
chip measurement results by different selection codes (1-15). The
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Figure 12: (a) The all chip measurement results of serpentine layout style of OSC by all different selection codes; (b) The all chip measurement results of straight line layout
style of OSC by all different selection codes

measurement result of the serpentine layout style is closer to the pre-
diction of post-layout simulations. To justify the repeatability of the
chip measurement, all 6 chips are measured with 10 times and the
results are shown in Figure 12. The average error of the serpentine
style layout is smaller than that of the straight line counterpart. Ta-
ble 1 tabulates the performance comparison of the proposed design
and several recent works about layout arrangement. The proposed
design achieves the second best FOM because our chip contains
two layout arrangements of OSCs. In other words, the chip con-
sumes much larger area than others. Notably, the proposed design
would have the best FOM if only the area of the serpentine style is
accounted for. The FOM will become 23606, simply the best of all.

5 Future Enhancement

The proposed OSC is a prototype for verifying the layout arrange-
ment impact on CMOS oscillators. Thus, the main issue to be
improved in the future is to enlarge the frequency range.

6 Conclusion

This investigation presents detailed analysis of OSC layout styles
to conclude that the serpentine layout significantly reduces the vari-
ation impact. Moreover, the proposed layout method can be used
to other CMOS processes. The proposed serpentine layout style
can be applied in other CMOS technology nodes to make the chip
performance more predictable in the early design stage.
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