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Abstract

The practical capacity of exponential bidirectional associative memory (eBAM) considering fault
tolerance and fixed dynamic range of VLSI circuits is discussed. Several factors are taken into consid-
eration in the implementation of an e BAM VLSI circuits chip. First, the fault tolerance requirement
leads to the discovery of the attraction radius of the basin for each stored pattern pair. Second, the
bit-error probability of the eBAM has to be optimally small when a huge amount of pattern pairs
are encoded in the eBAM. Third, the fixed dynamic range of a transistor or a diode operating in the
subthreshold region results in a limited length of each stored pattern. Hence, the signal-noise-ratio
(SNR) analysis approach is adopted to find the attraction radius, and the practical capacity. A max-
imal bit-error probability (Pe) is estimated. A maximal length of patterns under a fixed dynamic
range is derived.

1 Introduction

After Kosko [5] proposed the bidirectional associative memory (BAM), many researchers threw efforts
on improving its intrinsic poor capacity and implementing the BAM with hardware circuits. For instance,
among those researchers, Tai et al. [7] proposed a high-order BAM. However, we have pointed out that
all of these improvements pay a high price of increasing the complexity of the network but only get little
enhancement of the capacity [8]. Chiueh and Goodman [1] proposed an exponential Hopfield associative
memory motivated by the MOS transistor’s exponential drain current dependence on the gate voltage in
the subthreshold region such that the VLSI implementation of an exponential function is feasible. Based
upon the concept of Chiueh’s exponential Hopfield associative memory, Jeng et al. proposed one kind of
exponential BAM [4]. However, the energy function proposed in [4] can not guarantee that every stored
pattern pair will have a local minimum on the energy surface. Moreover, there is no capacity analysis
given in [4].

Although we have estimated the impressive capacity of an eBAM [8], it is doubtful when it comes to
the hardware realization of such a neural network. There are many factors to be taken into consideration.
‘We consider the eBAM should possess the ability of self-correcting, or called fault tolerance. In other
words, we hope when a given pattern is a few bits away from a desired pattern, it should be recalled
correctly. Inevitably, this property will decrease the maximal ideal capacity of the e BAM. The reason we
have to discuss this fault tolerance property is that there is always some noise in a VLSI circuit. Besides,
the bit-error probability of a recalled pattern is very important index to show the value of the network.
Hence, the bit-error probability will determine how many patterns to be stored in an eBAM. Since
Chiueh [2], Glasser [3], and Mead [6] all pointed out the dynamic range of the VLSI exponential circuits
operating in the subthreshold region is approximately fixed, this property leads an important limitation
in the implementation of an eBAM. That is, the dimension of the eBAM, the length of a stored pattern of
the stored patterns, might be limited. In this paper, we again adopt the signal-noise-ratio (SNR) analysis
approach to estimate the practical capacity of the BAM under aforementioned considerations.

2 Framework of Exponential BAM

Before proceeding the discussion of the practical capacity of the eBAM, we have to restate the
framework of the eBAM neural network as a background knowledge [8].
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2.1 Evolution equations

Suppose we are given M training sample pairs, which are {(A1, B1), (A2, B2), ..., (Asm, Bm)}, where
A; = (@i1,8i2, .., @in), Bi = (bi1, biz, ..., bip). Let X; and Y; be the bipolar mode of the training pattern
pairs, A; and B;, respectively. That is, X; € {-1,1}" and ¥; € {—1,1}*. Instead of using Kosko’s
approach [5], we use the following evolution equations in the recall process of the eBAM :

oL, oM b5 X >0 ol Lo M zab¥Y >0 1)
=Y -1 i M b5 X <o FTY -1, i M zabtY <0

where b is a positive number, b > 1, ”.” represents the inner product operator, z; and z;; are the kth bits
of X and the X;, respectively, and yx and y;; are for Y and the Y;, respectively. The reasons for using
an exponential scheme are to enlarge the attraction radius of every stored pattern pair and to enhance
the desired pattern in the recall reverberation process.

We adopt the SNR approach to compute the capacity of the exponential BAM,
2n—1b4
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where n is assumed to the min(n, p) without any loss of generality.

2.2 Attraction Radius of A Basin

In the previous subsection, the given pattern, say X, to recall the corresponding pattern pair is
exactly the same as one of the stored X;’s so that the corresponding Y; will be recalled. Suppose we
initialize the eBAM with an input pattern, X, which is r bits away from the nearest pattern X3, where
r < 2. And this input input pattern can still recall the nearest pattern and its corresponding pattern
Ys. We have the following conclusion.

Theorem 1 : Given a attraction radius, r, where r < %, the maximal capacity for an eBAM to store
pattern pairs is
2(n—2)

M < Mpax =14 (n_ o 1) TpA—3) (3)

Proof : According to Eqn.(1),

M
Yk = sgn {b(n—2r) ynk + Z ik - bX.~x} @

i#h

We only discuss the Y part of evolution equations without any loss of robustness here. Assume y; = —1
which is the signal. The power of the signal, i.e., the first term in the right hand side of Eqn.(4) is

S = (b(n—Zr))2 — b(zn——4r) (5)
On the other side, the noise term of Eqn.(4) can be deemed as (M — 1) random variables,
mn = yljbX;-X, vy = ygjbex, ceey UN = yijXN‘X, (6)

where all of the v;,i # h are the identical random variables. We can take v; to compute the mean and
the variance.

Pr(vy = 410" 2"2%) = Pr(y; = —1. 5"~ 2" 2F) = (%)"‘1 cr! (7
where k > r+1, and k& is the Hammming distance between X and X;. According to Eqn.(7), we certainly
get E {v1} = 0. Then, the variance can be derived as

n—1
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2 Z bz('""""l)(%)'"C,',", where m=n-1
k=r+1
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—

However, the above equation won’t have a close form solution mainly because of the summation term.
We can try to find the upper bound of this summation term. Let a = ~* to make the equations easy to
read. Then, the summation term in Eqn.(8) can be rewritten as

m m r r 1
Yoadcp = Satop-Y et ;":(1+a)”'—2a"»—";"—k‘
k=r+41 k=0 k=0 k=0 (m— ) )

]
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k=0
Hence, Eqn.(8) can be derived as
E[}] < 2(%)’%2(’"-1) [(A+07H™ —(1457%)]
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The above upper bound is the maximal noise power, called Npmay. Then the minimal signal-noise-ratio
(SN Rpin) of the eBAM is

S b(2n-4r)
(M = 1)Nmax (M —1) -2(3)P-Dp20 =2 [(1 4 b=4)=D — (1 + b=4y]
bt . 2n

T AM 1) b (4D = (14 64y (10)

SN Rmin =

The SN Ryin must be greater than 1 in order to recall the correct pattern pair. Hence, SN Rpin > 1,

b4 .9n

\
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= 4M-1)(n-r-1).pC"D
2" > 4M-1Dn-r-1).p%"2
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(n—r—1)-b4-2)

Q

M < 14

= Mpax (11)

The attraction radius, in other words, can be deemed as the ability of fault tolerance of the eBAM.
Basically, if we wish the fault tolerance ability of an eBAM to be enhanced, then unavoidably the
Hamming distance between every two stored pattern pairs must be increased so that the amount of
pattern pairs to be stored will be decreased. Referring to Fig. 1, it shows the capacity of an eBAM with
fault tolerance ability will drastically decrease with the increase of the radius of the attraction basin of
each stored pattern pair.

Consequently, the amount of stored pattern pairs certainly affects the probability of correct recall. It
is very important to realize whether the amount of stored pattern pairs exceeds a predetermined tolerable
error probability. Any memory with poor accuracy is worthless in any regards. The central limit theorem
is employed to develop an estimation of the bit-error probability of an eBAM given certain amount of
stored pattern pairs.
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Theorem 2 : The bit-error probability of the eBAM is

_149(-34)(n — r — 1)} p(8~4r)

P~ 1 (M l) 2 Z (n r 1) cexp |- a (12)
Wers 3= WM =1) D (n=r=1)

Proof : ynr can be assumed to be —1 without loss of robustness. Then, the error occurs when the
argument in the sgn function of Eqn.(4) turns out to greater than 0. That is,

P, = Prob(V >0),
M

V = -2 + Zy"k LpXeX — _pn-2r +v
s£h

Again we assume the summation term in the above equation is the sum of (M — 1) identical random
variables as described in the proof of Theorem 1. We also take v; as an example to compute the
expectation value and the variance of each random variable. According to Eqn.(9),

Var{n} = E{v}}-E?{vn}
VVar{v} < \/2(%)("‘1%2("—2) [(1+b4)(n=1) — (14 b-4)]
~ A T

2=+ =)(n — p — 1)}

Ty,

Since the overall noise, v, is the sum of (M — 1) identical random variables, e.g., vi, we surely have the
following conclusion.

Var{v} = (M —1)-Var{n;}, o, =(M—-1)}s,, (13)

Henceforth, the error of the recall process occurs when v > 0 in Eqn.(4). Basing upon the central limit
theorem, we should have the following result when n — co, M — oo.

n—2r
P. = Prob(V > 0) = Prob(v > b""2") = Q (b ~ ) (14)
where 1 . 1
2 2
1) = —— “Fdrr —=-t"l-e" T 15
Q) \/2_7l'/t € T or e 3 (15)

Hence, the bit-error probability P, is defined as

— 1o+ (-
Pez_l__.(M D32 —r 1)%‘exp[

/27( b(4—- 2r)

Though the above equation looks very complicated at first glance, a comprehensive result is given is
Fig. 2 which shows the relationship between P, and M, n,r. Another astonishing result given in Lemma 1
showing that when the largest amount of stored pattern pairs under a given attraction radius is stored in
an eBAM, the bit-error probability is a constant which is independent from the dimension of the eBAM.

Lo ] (16)

T2AM—1) 20D (n—r —1)

Lemma 1 : When the number of the stored pattern pairs is approaching the upper bound of a given
attraction radius, as defined in Theorem 1, the bit-error probability will approach a fixed value. That is,

1 1
P =~ —\/.-2_—;(. -exp(—g) =~ 0.24197, when M = Mpax an

Proof : According to Eqn.(11), if M = Mmpax, then

exp |—

p(8—4r) ] p(8=ar)

— exp | — — —

2AM —1) .27+ . (n —r — 1) 2.(_":;1_(3%37.2( n2) (n—r—1)
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and

(n— -
(M —1)320-34D)(n — r — 1)} (z,.—_—,%:-—zy)%?( BDn—r-1)} :
b(4-2r) p(a-2r) =1
Thus, we have the following conclusion,
1 1
P, ~ E . exp(—E) ~ 0.24197 (18)

2.3 Dynamic Range Limitation

Chiueh [2], Glasser [3], and Mead [6] pointed out that a transistor operating in the subthreshold
region working as an exponentiation circuit has a dynamic range of approximate 105 to 107. In the
realization of eBAM by VLSI circuit, hence, the dimension, n, and the amount of stored pattern pairs,
M, must also be limited. Assume the dynamic range D to be D = b”. When the dimension of the eBAM,
n, increases, then b will decrease. Thus, the capacity given in Eqn.(3) should be changed and recalculated
accordingly. Referring to Fig. 3, the increase of radix b will cause the drastical decrease of the dimension
of the eBAM. An estimation of the practical capacity of an eBAM under this dynamic range limitation
is shown in the following discussion.

Theorem 3 : Given a fixed dynamic range, D = b", the maximal number of pattern pairs allowed to be
stored in an eBAM with dimension n, is
Dlog,, 2
logb D

Proof : Since b > 1 and D is a fixed number, we’d like to let b as small as possible in order to get a
large dimension, n. Hence, assume b = 1 + u, where u is a small positive number.

~

(19)

D=0b", logD=nlogb=nlog(l+pu)xn u (20)
Basing upon Eqn.(11), if 4 — 0,n — 0o, the Mpax can be rewritten as
2(71—2) gn-2 gn-2 on
Mpax = -3 N ~ x — (21)
(n—r—1)- 542 7 [14+4(r—2)y]-n n n

logy, 3
log, D *

The dimension of the eBAM, thus, will be restricted by the fixed dynamic range. A proper size of the
eBAM if e is used as the radix is n = p = 16 accordingly.

Thus, we can have the following approximation equation, Myay &

3 Simulation Analysis

Example 1. In order to verify the prediction of the attraction radius and the bit-error probability, we
have conducted simulations to confirm the practical capacity of the eBAM. Referring to Table 1, a 16x16
eBAM with randomly generated stored pattern pairs has undergone the simulation of recalling process
of pattern pairs.

M r | No. of test [ No. of failures | error rate | theoretical P,
1300 | 1 15180 0 0.0000 =0
1500 | 1 17122 1 0.0001 ~ 0
1600 | 1 17570 6 0.0003 =~ 0
1800 | 1 18452 9 0.0005 =0

100 | 2 10078 0 0.0000 0.0002
500 2 22143 224 0.0100 0.0710
1000 | 2 14712 304 0.0200 0.1890
1200 | 2 11240 823 0.0730 0.2300
1500 | 2 6839 948 0.1386 0.2858

Table 1: The simulation of the 16x16 eBAM.
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Note that the recalling ability of the eBAM under practical consideration is still very outstanding and
promising. The P, in Eqn.(12) is proved to be a good approximation of the upper bound of the bit-error
probability. The The above data for r = 2 is also shown in Fig. 4 to verify the prediction of P,.

4 Conclusion

We have discussed the practical capacity of the e BAM when it comes to the consideration of its
hardware realization. The feasible size of an eBAM implemented with VLSI cir¢uits is also estimated.
The simulation results turn out to be coherent with the prediction of the theory. In short, the eBAM
with fault tolerance ability is worthy of implementation by VLSI circuits.
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