Realization of Bidirectional Associative Memory
Using A Pseudo-Parallel Searching Approach *

Chua-Chin Wang & In-Hau Horng
Department of Electrical Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan 80424
Tel : (886-7) 5316171 ext. 4047
Faz : (886-7) 5615137
email : ccwang@ee.nsysu.edu.tw

A Abstract

A simple and high speed realization of bidirectional associative memory (BAM) with
dynamic storage is presented. Although the BAM has been proved to be a stable system,
the capacity of the BAM is small if the original evolutions are employed. Hence, in order
not to lose any of the capacity of the BAM, we consider the simplicity of the design, the
speed of the architecture, and the pseudo-parallel searching in this implementation. Only
digital circuits are employed in this chip. MAGIC layouts of the chip and IRSIM simulation
results will be presented, which confirms the performance of the chip design. The proposed

architecture for the implementation turns out to be a scalable, regular, and dense design.

1. Introduction

After Kosko [6], [7] proposed the bidirectional associative memory (BAM), many
researchers threw efforts on improving its intrinsic poor capacity and implementing the
BAM with hardware circuits. Among those researchers, Wang et al. [12] proposed two
alternatives, multiple training and dummy augmentation, to enhance BAM’s ability to
find the global minimum; Simpson proposed an intraconnected BAM and a high-order
autocorrelator [10]; and Tai et al. [11] proposed a high-order BAM; Wang et al. [14]
developed a weighted learning algorithm for BAM. However, we have pointed out that all
of these improvements pay a high price of increasing the complexity of the network but
only get little enhancement of the capacity [13]. In contrast, when it comes to the hardware
realization of the BAM, most of the modified BAMs turn out to pay too much overhead
and gain little enhancement regarding the capacity.

Though the neural networks implemented with MOS operating in the subthreshold re-
gion have the advantages of low power and compatibility with VLSI circuits, {1], [4], [5],

*This research was partially supported by National Science Council under grant NSC 83-0408-E-110-015.

(8], the current mode circuitry are not very easy to manipulate and design. In addition,
the fault tolerance, or called error correction ability, of the original BAM structure is not
really ensured. We utilize pseudo-parallel searching method to ensure the fault tolerance
of the BAM without much loss of the recall speed. The results of simulations are more
appealing than prior works.

2. Theory of BAM

Suppose we are given N sample pattern pairs, which are {(X1,1), (X2, 13), ..., (Xn, Yn)}
where, X; € {—1,+1}" and ¥; € {~1, +1}”. The recall of the associated pattern pairs is

XoM-Y)=2 (X «MT —Y)= ...

where M = TN XTy.. Although the BAM possesses the error correction ability, it is poor
and its capacity is estimated less than min(n, p). Moreover, the error correction capability
or the fault tolerance is not guaranteed once if the Hamming distance between any two
store pattern vectors are too small.

3. Digital Implementation of BAM
3.1 Pseudo-parallel searching in BAM
We used to employ the sequential searching type method to find the closest pattern

to the retrieval pattern. In this design, a pseudo-parallel searching method is proposed.
This method uses space to trade off the speed. Extra registers are needed to enhance the
searching speed. Assume M pairs are to be stored. We then divide the M pairs into k
sections in which the sequential searching method is parallelly used to find a key vector
(KV) in each section. The key vectors will be pairwisely compared in a binary-tree-like
way as shown in Fig. 1. Thus, the number of searching comparisons is a function of & :

M
J(K) = 5+ log, & 1)
The minimum f(-) is located at k = log2 x M. If M =8, then k = 2.4 ~ 2.
3.2 Implementation of BAM

The architecture of the pseudo-parallel searching example is shown in Fig. 2. The
entire design is clearly divided into the clock generator, RAM planes, latch units, and the
arbitrator. For the sake of clarity, we only discuss the searching of X — Y phase.

3.2.1 latch units

In order to achieve the pseudo-parallel searching goal, we adopt some latch registers to
either temporarily or permanently store data during the recall process such that the closest
pattern might be found. The Temp Vector (TV) register is used to store the vector read

from a section of the memory, while the closest vector of this section, called key vector

(KV), is finally stored in key vector register. After initialization, the first pattern vector
is automatically copied into TV register and KV register. Then, from the second pattern
vector to the last pattern vector of that section will be sequentially loaded into TV register.
After each loading operation, the vector in TV register and that in KV register will then be
compared with the retrieval vector to see which one is closer to the retrieval vector (RV).
The one closer to the RV will be the winner and stay in the KV register. After the last
comparison, the Key Vector (KV) register store the pattern vector that section closest to
the RV. Simultaneously all of the sections will generate its own KV. Then these KVs will
be simulatneously and pairwisely compared until only one winner left in the final register

which is shown as Fig. 1.
3.2.2 arbitrator

The arbitrator is composed of XNOR gates, decoders and comparators. Its function is
to decide which vector, KV or TV, is closer to RV. When all of the vectors in that section
are all compared, the final "winner” will be placed in the Key Vector (KV) register. The
block diagram of the arbitrator is shown in Fig. 3. As for the decoder, it is basically a
8-t0-9 decoder. When KV and TV respectively are XNORed with RV, the one closer to
RV will produce more 1s in its own XNOR result. Thus, the function of the 8-t0-9 decoder
is to count the number of 1, which is one of 9 possibilities, 8, 7, ..., 0. This indicates
the 8-to-9 decoder is needed. The result of the decoder is only one "H” (high or ”1”7) and
the rest 8 outputs are all "L”. The architecture is shown in Fig. 4. The architecture of
the decoder is half of a 8x8 box. If the bit of the XNOR of X and X is 0, then move
horizontally one grid to the right; if the bit is 1, then move upwardly one grid. For instance,
in Fig. 5, which shows the prototype of the decoder, if the result of the XNOR is (100
0010 1), then the output for +3 should be high, and the rest are all 0. The results of
KV XNORed with RV and TV XNORed with RV will be 9-bit binary vectors after the
decoder. They have to be compared to determine which one is closer to RV. As for the
magnitude comparator of the arbitrator, it shown in Fig. 6. The comparator consists of 9
identical cells, which are able to compare two binary numbers. It indicates whether A > B
or not, where A = (aoa, ...as), B = (boby ...bs). The last cell of the comparator deliver a
signal showing whether there is any vector close to the retrieval vector. If there is, then
the vector will be written into the key vector register.

The previously described procedure will be repeated until every vector in one section is

compared. Then the closest one will be kept in the KV.
3.3 Storage of corresponding pattern vectors

When the chip is reset, the pattern vectors are written into memory planes through data

lines at a store signal. The X vector is written before the Y vector.

4. Simulation and Conclusion

We implement this chip by using MAGIC with 0.8 pm technology. According to the
IRSIM simulation, we approximately can estimate the speed for a single comparison is
120 ns. The total about of time is proportional to 120x (& + + log, k) ns. If the sequential
searching approach is adopted, the time to find a stored pattern pair will be 120x8 ns if
M = 8. In contrast, the searching time by using our approach is 120x5 ns if M = 8 and
k = 2. The performance of the searching speed is enhanced. The chip layout is shown in

Fig. 7. The design is also scalable to be able to be integrated with other types of neural
networks hardware.

References

[1] K. A. Boahen, P. O. Pouliquen, A. G. Anderou, and R. E. Jenkins, “A heteroassociative
memory using current-mode MOS analog VLSI circuits,” IEEE Trans. on Circuits &
Systems, vol. 36, no. 5, pp. 747-755, May 1989.

[2] T. D. Chiueh, and R. M. Goodman, “Recurrent correlation associative memories,”
[EEE Trans. on Neural Networks, vol. 2, no. 2, pp. 275-284, 1991.

[3] L. A. Glasser and D. W. Dopperpuhl, “The Design and Ana.ly81s of VLSI Circuits.”
Reading, MA: Addison-Wesley, 1985.

(4] A. Johannet, L. Personnaz, G. Dreyfus, J.-D. Gascuel, and M. Weinfeld, “Specifica-
tion and implementation of a digital Hopfield-type associative memory with on-chip
training,” IEEE Trans. Neural Networks, vol. 3, no. 4, pp. 529-539, July 1992.

[5] M. Jabri, S. Pickad, P. Leong, and Y. Xie, “Algorithms and implemnetation issues in
analog low power learning,” J. of VLSI Signal Processing, 6, pp. 67-76, 1993.

[6] B. Kosko, “Adaptive bidirectional associative memory,” Appl. Opt., vol. 26, no. 23,
pp. 4947-4960, Dec. 1987.

[7] B. Kosko, “Bidirectional associative memory,” [EEE Trans. Systems Man Cybernet,
vol. 18, no. 1, pp. 49-60, Jan./Feb. 1988.

[8] D. Liu, and A. N. Michel, “Sparsely interconnected neural networks for associative
memories with application to cellular neural networks,” IEEE Trans. Circuits & Sys-
tems - II : Analog and Digital Signal Processing, vol. 41, no. 4, pp. 295-307, Apr.
1994.

[9] C. A. Mead, “Analog VLSI and Neural Systems.” Reading, MA: Addison-Wesley, 1989.

(10] P. K. Simpson, “Higher-ordered and intraconnected bidirectional associative memory,” -
[EEE Trans. Systems Man Cybernetics, vol. 20, no. 3, May/June 1990.

(t1] H. M. Tai, C. H. Wu, and T. L. Joug, “High-order bidirectional associative memory,”
Electron. Lett., 25, pp. 1424-1425, 1989.

(12] Y.-F. Wang, J. B. Cruz, Jr., and J. H. Mulligan, Jr.. “Two coding strategies for
bidirectional associative memory,” [EEE Trans. Neural Network, vol. 1, no. 1, Mar.
1990.

(13] C.-C. Wang, and H.-S. Don, “An analysis of high-capacity discrete exponential BAM,”
[EEE Trans. on Neural Networks, vol. 6, no. 2, pp. 492-496, March 1995.

[14] T. Wang, X. Zhuang, and X. Xing, “Weighted learning of bidirectional associative
memories by global minimization,” [EEE Trans. on Neural Networks, vol. 3, no. 6, pp.

1010-1018, Nov. 1992.

L5
{pail)
—(b N ehl L
:ﬂ clock generator

M —/ reset
. .)) ||
) =
M pairs)) \:]_ RAM | RAM | RAM | RAM
stored pattérn * ! ~—A | (partX) | (partY)| (partX)| (partY)
linps U U,
X

/H.
[

J

!:/: | ckent, T U
- cikcnt
P \ latch units
: (
latch ynits
Fig. 1 pseudo-parallel searching - J\L —

i

. [

<‘ Retrieval Vactor

A [
Key Vactor ~ :’k‘“ L
R | XNORs| = pouort | 2 = .
Temp vactor . | XNORs | — | 309 | Comparator - arbitratof
Decoder| = ~— larbitrator

Fig. 3 arbitrator Fig. 2 Architecture of digital BAM

- S Aw— r

b o |\‘\-~r L\—ﬂl L—< \ i:
i k_n; u«.‘\k_.c\ﬁi '

f oS u,,-. s

ait1 -[.“

Fig. 4 8-to-9 decoder

— e t7
i
iy, WY
e — T
— s
‘ |
; P
— P 02
; | :
s | — e+
H ! I

EX:10000101 = +3

Flig. 5 possible Value Generation Algorithm

MSB LSB
a0 b0 at o b2 a3 b3 ad b4 a5 bs a6 58 7a b7 a8 b8
90 0*- |__9s
1 [} 1 2 3 4 s . 7 s 9
€y — —
A =(a0,a1,a2....a8), B = (b0,b1,b2 b8)
a comparator boolean function : gnl| e
9.1 =gm(a, + b)+erah 11 1] AB
0] 0] A<B
e =ep(b; + a)+g,*ah 0 1 =B

Fig .6 comparator

b el v il = Tl T ol Tt

)

EEEEENEEEN

Fig . 7 the chip

layout

