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ABSTRACT 
A high speed 64b/32b integer divider employing digit- 
recurrence division method and the on-the-fly conversion 
algorithm, wherein a fast normalizer is included, which is used 
as the pre-processor of the proposed integer divider. For the 
sake of enhancing throughput rate, the proposed divider uses 
radix-4/2 division instead of the traditional radix-2 division. 
On-the-fly remainder adjustment is also realized in the converter 
module of the divider. The entire design is written in Verilog 
HDL (hardware description language) employing Compass 0.6 
pm 1P3M cell library (V3.0): and then synthesized by 
SYNOPSYS. At last, a real chip is fabricated and fully tested. 
The test results turn out to be very impressive. Besides, a 
performance evaluation of a 128b/64b signed integer divider 
using the same design methodology is also included in this study. 

1. INTRODUCTION 

Integer division is a critical operation in the CPU design, since 
the number of clock cycles to complete an integer is probably 
very long and unpredictable [1][2][3]. The role of division is 
becoming more and more critical owing to the requirement of 
signed computer arithmetics, the modulus computation, the 
calculation of encryption keys, and so on. Division algorithms 
can be roughly classified into two categories: namely, digit- 
recurrence methods [4][5], and functional iteration techniques 
[4][6], while the former is commonly used. Regarding the digit- 
recurrence method, traditionally there are two types of division 
schemes, i.e., restoring and non-restoring schemes. However, 
they both require multiple operation steps to derive a quotient bit. 
Not only is the efficiency drastically poor, but also a long 
addedsubtracter is needed to execute the remainder bit 
adjustmed. These difficulties lead to the degradation of the 
entire microprocessor. Although high-radix division algorithm 
has been proposed to overcome the mentioned problems [5][7], 
there are a few things left unsolved. First, how to efficiently 
normalize the dividend and the divisor. Second, how to correctly 
adjust the final quotient and remainder without paying too many 
H/W overheads. In addition, though many research works has 
been proposed to either enhance the speed or the throughput 
[4][5][6][8][9][ IO], the real hardware realization of a long 
divider is still a challenging task. The difficulties involved in the 
hardware realization include how to meet the minimal clock 
period, how to rapidly normalize given data words, how to 
control the operation sequence of different modules such that no 
racing problem occurs, and so on. 

In this work, we thoroughly complete the VLSI implementation 
of a long: 64b/32b signed integer divider wherein a pipelined fast 
normalizer, radix-4/2 digit-recurrence algorithm, and on-the-fly 
conversion method [6]. The proposed design methodology can 
also be applied to a longer divider, e.g., 128b/64b signed integer 
divider. All of these works are physically implemented by using 
Verilog code integrated with COMPASS 0.6-pm IP3M cell 
library iin the Cadence cadtool environment. Thc final chip 
layout hias been tapeout and delivered to the TSMC (Taiwan 
Semiconductor Manufacturing Company) to produce the real 
product. At last, the real chip in DIP package is fabricated and 
fully testled by IMS digital tester of ATS. The test results verify 
the correctness of our design 

2. CELL-BASED DESIGN OF 64B/32B 
SIGNED’INTEGER DIVIDER 

2.1 Digit-Recurrence Theory 

Assume a:, d, q, rem to be the dividend, the divisor, the quotient, 
and the remainder in the division operation. We also denote the 
radix of the division is r. Define a residual (partial remainder) w 
so that in the j th step of division is 

(1) 

According to [SI, the digit-recurrence algorithm is described as 
follows: 

0 One digital arithmetic left-shift of wh] to produce r.wU] 
except the first step; 

Detlermination of the quotient digit q,+1 by the quotient- 
digit selection function; 

Genleration of the divisor multiple dq,,,; 

Subtraction of dq,,, from r.whJ, 

wDJ L 9 (X - dqDJ) 

0 

0 

0 

where 
-d wDJ < d 

(3) 
if  w[n] 2 0 w[n]. r -n 

(w[n]+ d ) . r - n  if w[n] < 0 
rem = 

Fig. 1 shows the data flow of a division step. 

Although the above algorithm has been well written in literature 
[5], the following unsolved problems still appear during the 
implementation: 
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a) 

b) 

c) 

d) 

e) 

Fast normalization of the dividend and the divider is 
ignored. 

A long adder is needed at the adjustment of the remainder. 

Extra adjustment actions are required when the last cycle of 
the division contains non-multiple digits of the radix. 

The adjustment of the remainder is missing when the 
signed division is executed. 

A data flow control unit is required, which provides correct 
timing control such that the results of the division can be 
correctly placed on the output ports. 

In short, the above problems will occur during the realization of 
a long signed divider. If these problems are not resolved 
efficiently, the hardware divider will be large and slow. 

- -____  * 1 ~ Quot i en t -d ig i t  s e l e c t i o n  
f u n c t i o v  Q I -  i 4J+ 1 

4 
Fig. 1 The data flow of a division step. 

2.2 Design of the 64bl32b Signedlunsigned 
Integer Divider 

In this work, we present an improved design of a long 128b/64b 
signedunsigned integer divider and a physical 64b/32b signed 
integer divider chip implementation, where the long ignored 
implementation problems mentioned above are all resolved. The 
key design issues of our integer divider are enumerated as 
follows: 

0 Fast Normalizer 
Binary data normalizer is one of the major time bottlenecks 
in dividers [5 ] [6 ] .  If the sequential style of normalizers is 
used, the average time for a dividend or divisor normalization 
will be very long. The task of normalizer is to find the bit 
position of the first leading "1" of the given binary data. 
Since the data is unknown, the worst case of the time 
complexity will be 0 (N), [8 ] [9 ] .  From the viewpoint of data 

flow, the combinational design will be faster than the 
sequential design. Hence, We adopt a fast and scalable 
design methodology to normalize the binary data with the 
time expense = 0 (log N). 

Assume the length of the data word is N,  which is the power 
of 2. The entire word is divided into subwords with the 
length n, which is also the power of 2. Hence, the number of 
subwords is N/n. We can utilize modified priority encoders 
to locate the leading "1" in a subword. 

The bit position of the leading "1" can be detected by an n-bit 
priority encoder (PE). The output of the PE is the binary 
representation of the position of the leading "1" in the 
subword. The length of the output representation is, then, k 
= [log, nl. The function table of the PE is shown in the 
following: 

Table 1 : The function table of the priority encoder (PE). 

Fig. 2 The architecture of fast normalizer (N = 64, n = 4). 

We still can not figure out where the global leading "1" is at 
this stage, even though the respective leading "1" is known in 
each subword. A total of N/n n-input OR gates and another 
PE, called the high-level PE, are required to generate the 
select signals telling which subword the leading "1" is 
located. This high-level PE and the PES used in the 
subwords are arranged in a hierarchical format. The output 
of the high-level PE is the selection signals of a total of k 
N/n-way-to-1 MUXs. The architecture of the entire fast 
normalizer is shown in Fig. 2 where N = 64, and n = 4. 
Notably, the outputs of these PES are utilized for two tasks : 
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1) computing the required number of cycles to generate the 
correct quotient and the remainder; 

2) instructing a barrel shifter to shift the original data word 
properly. 

0 Radix-4 Division with a Radix-2 Selection Function 
The next problem that we like to resolve is the redundant step 
occurring at the last step of the division. Since the radix-4 is 
used in the division, there is a possibility that the last stage of 
division has only one bit left in the dividend to be processed. 
If only one radix-4 selection function [5 ]  is used at this stage, 
an extra adjustment step will be needed to correct the result. 
This introduces additional delays and hardware cost, e.g., 
long adders. We thus integrate the radix-2 selection function 
in the division to overcome this difficulty. The control unit 
will monitor the number of bits left in the dividend such that 
the radix division will be executed at the last stage when the 
number of bits of the dividend is odd. Moreover, in our 
design we can take advantage of that the positions of leading 
"1" in the dividend and the divider can be detected in the 
normalizer such that the total number of division steps is well 
determined before the iterative digit-recurrence mechanism. 

Radix4 (High Radix) Quotient Selection Function Table 
It can be shown that the residual is computed basing on the 
following equality. 

w/j+I]  = r.w/jJ - Dq],, (4) 

where q,-, is the quotient bits generated at step j + l .  r is the 
radix. Meanwhile, the residual must be bounded, -D < w/j] 
< D . Thus, we tend to utilize a table look-up method to 
realize such a function, 

qr+i SEL (w,fj'', D )  ( 5 )  

The SEL() in the above function is called "quotient selection 
function", which is shown in Fig. 3 .  

I 
c + I +[log, r 

' Quotient-digit 
' Selection 1 6-l 
' Function 

Table I 
4- f (4, 

Fig. 3 The quotient-digit selection function table with inputs 
and outputs. 

0 Hardware Consideration of Signed Division 
Notably, the sign of the remainder should be the same as that 
of the dividend. This results in an adjustment problem of the 

remainder at the last stage of the division. Usually a full 
wordlength adder is required to handle this problem. In our 
design, both the dividend and the divider are converted into 
positlive numbers before the normalization. Their sign 
information is then kept and used to select the result 
generated by the 35-b carry save adder (CSA) for the 
remainder adjustment. This will simplify the entire design 
and have not loss regarding speed. 

Data Flow Control Unit 

Our cell-based design for the 64b/32b signedhnsigned integer 
divider is given in Fig. 4. Notably, the hardware penalty of using 
the radix-4/2 division is that of a total of 133+65+4+67 2-to-1 
MUXs plus a few simple primitive gates are needed in addition 
to the original W of a pure radix-4 selection function. 
However, the gain regarding the timing to handle the adjustment 
for 1 bit qjuotient is worthwhile. 

32,J divisor d dividend x 1 

-k, -v 2 
, 1 32 bitd i l 35 bit WC !+ 7 1 70 bit WS 

-r- 3 4  
r'l 
e- 

Radix4 1 

A i  

4 7 Selection 
Fundon 

, Table 1 Lr - 1 

/ 36bltCSA 1 

Fig 4 The design architecture of the 64b/32b signedhnsigned 
integer divider 

3. PERFORMANCE EVALUATION & 
CHIP IMPLEMENTATION 

In order to compare with currently available design 
methodologies for long integer dividers, we extend our design 
approach by using the Verilog HDL incorporated with 
COMPASS 0.6 pm 1P3M cell library (version 3.0) to synthesize 
such a 128b/64b signedhnsigned divider by SYNOPSYS. The 
detailed numerical report is shown in Table 2. 

Although the longest delay is almost 18 ns, it doesn't imply that 
the shortest period of the working clock has to be the same value. 
The reason is that the division by the digit-recurrence method 
requires many "steps"; while each step is triggered by the 
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working clock. We will find out what the maximum working 
frequency is later by simulations. In fact, the digit-recurrence is 
based on the clock cycles. We, thus, randomly generate over 
30,000 test vectors to find out the possible shortest period of the 
clock. The result shows that a clock with 12 ns period will 
provide correct division result. 

combinational 

control unit 

Part name [Total area (gate count)l critical delay (ns) 

17946.667969 17.56 

347.993408 1 7.25 

Design 

rpl model of [I 11 

bla model of [ 1 11 

divider of P-I1 [ 13 

Our design 

Table 2 : Performance evaluation by SYNOPSYS. 

In order to realize the performance improvement of the proposed 
design in the long integer division, the following table shows the 

Area (gate longest delay 
count) (gate delays) 

100,000 2 12,000 ns 

m 100,000 2 1,200 ns 

(NA) (NA) 

5 20,000 4 1 x 12=492 ns 

longest delay 
(cycles) 

33 (64bI32b) 

41 

Table 3: Performance comparison of 128b164b integer dividers. 

The above results show that our design indeed possesses the 
advantages regarding the area and the speed. 

We also compare our work with currently available CPUs' 
integer divider, including [2][3], to present the superior design of 
our divider chip, as shown in Table 4. Note that the entry in 
Table is the number of clock cycles. 

Table 4: Cycle-based performance comparison of 64bI32b 
integer dividers. 

The-real 64bh2b chip has been tested by IMS digital tester of 
ATS Co. The die photo of the chip is shown in Fig. 5.  The chip 
has been tested by 1000 groups of dividend and divider pairs, 
which are randomly generated, and the results of corresponding 
quotient and remainder pairs are all correct. 

Fig. 5 The dic photo ofthe chip. 
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