
A CHIP DESIGN OF RADIX-412 64B/32B SIGNED AND UNSIGNED
INTEGER DIVIDER USING COMP,ASS CELL LIBRARY

C.-C. Wang, C.-J Huang, & G.-C. Lin
Department of Electrical Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan 80424

ABSTRACT
A high speed 64b/32b integer divider employing digit-
recurrence division method and the on-the-fly conversion
algorithm, wherein a fast normalizer is included, which is used
as the pre-processor of the proposed integer divider. For the
sake of enhancing throughput rate, the proposed divider uses
radix-4/2 division instead of the traditional radix-2 division.
On-the-fly remainder adjustment is also realized in the converter
module of the divider. The entire design is written in Verilog
HDL (hardware description language) employing Compass 0.6
pm 1P3M cell library (V3.0): and then synthesized by
SYNOPSYS. At last, a real chip is fabricated and fully tested.
The test results turn out to be very impressive. Besides, a
performance evaluation of a 128b/64b signed integer divider
using the same design methodology is also included in this study.

1. INTRODUCTION

Integer division is a critical operation in the CPU design, since
the number of clock cycles to complete an integer is probably
very long and unpredictable [1][2][3]. The role of division is
becoming more and more critical owing to the requirement of
signed computer arithmetics, the modulus computation, the
calculation of encryption keys, and so on. Division algorithms
can be roughly classified into two categories: namely, digit-
recurrence methods [4][5], and functional iteration techniques
[4][6], while the former is commonly used. Regarding the digit-
recurrence method, traditionally there are two types of division
schemes, i.e., restoring and non-restoring schemes. However,
they both require multiple operation steps to derive a quotient bit.
Not only is the efficiency drastically poor, but also a long
addedsubtracter is needed to execute the remainder bit
adjustmed. These difficulties lead to the degradation of the
entire microprocessor. Although high-radix division algorithm
has been proposed to overcome the mentioned problems [5][7],
there are a few things left unsolved. First, how to efficiently
normalize the dividend and the divisor. Second, how to correctly
adjust the final quotient and remainder without paying too many
H/W overheads. In addition, though many research works has
been proposed to either enhance the speed or the throughput
[4][5][6][8][9][IO], the real hardware realization of a long
divider is still a challenging task. The difficulties involved in the
hardware realization include how to meet the minimal clock
period, how to rapidly normalize given data words, how to
control the operation sequence of different modules such that no
racing problem occurs, and so on.

In this work, we thoroughly complete the VLSI implementation
of a long: 64b/32b signed integer divider wherein a pipelined fast
normalizer, radix-4/2 digit-recurrence algorithm, and on-the-fly
conversion method [6]. The proposed design methodology can
also be applied to a longer divider, e.g., 128b/64b signed integer
divider. All of these works are physically implemented by using
Verilog code integrated with COMPASS 0.6-pm IP3M cell
library iin the Cadence cadtool environment. Thc final chip
layout hias been tapeout and delivered to the TSMC (Taiwan
Semiconductor Manufacturing Company) to produce the real
product. At last, the real chip in DIP package is fabricated and
fully testled by IMS digital tester of ATS. The test results verify
the correctness of our design

2. CELL-BASED DESIGN OF 64B/32B
SIGNED’INTEGER DIVIDER

2.1 Digit-Recurrence Theory

Assume a:, d, q, rem to be the dividend, the divisor, the quotient,
and the remainder in the division operation. We also denote the
radix of the division is r. Define a residual (partial remainder) w
so that in the j th step of division is

(1)

According to [SI, the digit-recurrence algorithm is described as
follows:

0 One digital arithmetic left-shift of wh] to produce r.wU]
except the first step;

Detlermination of the quotient digit q,+1 by the quotient-
digit selection function;

Genleration of the divisor multiple dq,,,;

Subtraction of dq,,, from r.whJ,

wDJ L 9 (X - dqDJ)

0

0

0

where
-d wDJ < d

(3)
if w[n] 2 0 w[n]. r -n

(w[n]+ d) . r - n if w[n] < 0
rem =

Fig. 1 shows the data flow of a division step.

Although the above algorithm has been well written in literature
[5], the following unsolved problems still appear during the
implementation:

0-7803-547 1-0/99/$10.0001999 IEEE

1-439

a)

b)

c)

d)

e)

Fast normalization of the dividend and the divider is
ignored.

A long adder is needed at the adjustment of the remainder.

Extra adjustment actions are required when the last cycle of
the division contains non-multiple digits of the radix.

The adjustment of the remainder is missing when the
signed division is executed.

A data flow control unit is required, which provides correct
timing control such that the results of the division can be
correctly placed on the output ports.

In short, the above problems will occur during the realization of
a long signed divider. If these problems are not resolved
efficiently, the hardware divider will be large and slow.

- -____ * 1 ~ Quot i en t -d ig i t s e l e c t i o n
f u n c t i o v Q I - i 4J+ 1

4
Fig. 1 The data flow of a division step.

2.2 Design of the 64bl32b Signedlunsigned
Integer Divider

In this work, we present an improved design of a long 128b/64b
signedunsigned integer divider and a physical 64b/32b signed
integer divider chip implementation, where the long ignored
implementation problems mentioned above are all resolved. The
key design issues of our integer divider are enumerated as
follows:

0 Fast Normalizer
Binary data normalizer is one of the major time bottlenecks
in dividers [5] [6] . If the sequential style of normalizers is
used, the average time for a dividend or divisor normalization
will be very long. The task of normalizer is to find the bit
position of the first leading "1" of the given binary data.
Since the data is unknown, the worst case of the time
complexity will be 0 (N), [8] [9] . From the viewpoint of data

flow, the combinational design will be faster than the
sequential design. Hence, We adopt a fast and scalable
design methodology to normalize the binary data with the
time expense = 0 (log N).

Assume the length of the data word is N, which is the power
of 2. The entire word is divided into subwords with the
length n, which is also the power of 2. Hence, the number of
subwords is N/n. We can utilize modified priority encoders
to locate the leading "1" in a subword.

The bit position of the leading "1" can be detected by an n-bit
priority encoder (PE). The output of the PE is the binary
representation of the position of the leading "1" in the
subword. The length of the output representation is, then, k
= [log, nl. The function table of the PE is shown in the
following:

Table 1 : The function table of the priority encoder (PE).

Fig. 2 The architecture of fast normalizer (N = 64, n = 4).

We still can not figure out where the global leading "1" is at
this stage, even though the respective leading "1" is known in
each subword. A total of N/n n-input OR gates and another
PE, called the high-level PE, are required to generate the
select signals telling which subword the leading "1" is
located. This high-level PE and the PES used in the
subwords are arranged in a hierarchical format. The output
of the high-level PE is the selection signals of a total of k
N/n-way-to-1 MUXs. The architecture of the entire fast
normalizer is shown in Fig. 2 where N = 64, and n = 4.
Notably, the outputs of these PES are utilized for two tasks :

1-440

1) computing the required number of cycles to generate the
correct quotient and the remainder;

2) instructing a barrel shifter to shift the original data word
properly.

0 Radix-4 Division with a Radix-2 Selection Function
The next problem that we like to resolve is the redundant step
occurring at the last step of the division. Since the radix-4 is
used in the division, there is a possibility that the last stage of
division has only one bit left in the dividend to be processed.
If only one radix-4 selection function [5] is used at this stage,
an extra adjustment step will be needed to correct the result.
This introduces additional delays and hardware cost, e.g.,
long adders. We thus integrate the radix-2 selection function
in the division to overcome this difficulty. The control unit
will monitor the number of bits left in the dividend such that
the radix division will be executed at the last stage when the
number of bits of the dividend is odd. Moreover, in our
design we can take advantage of that the positions of leading
"1" in the dividend and the divider can be detected in the
normalizer such that the total number of division steps is well
determined before the iterative digit-recurrence mechanism.

Radix4 (High Radix) Quotient Selection Function Table
It can be shown that the residual is computed basing on the
following equality.

w/j+I] = r.w/jJ - Dq],, (4)

where q,-, is the quotient bits generated at step j + l . r is the
radix. Meanwhile, the residual must be bounded, -D < w/j]
< D . Thus, we tend to utilize a table look-up method to
realize such a function,

qr+i SEL (w,fj'', D) (5)

The SEL() in the above function is called "quotient selection
function", which is shown in Fig. 3 .

I
c + I +[log, r

' Quotient-digit
' Selection 1 6-l
' Function

Table I
4- f (4,

Fig. 3 The quotient-digit selection function table with inputs
and outputs.

0 Hardware Consideration of Signed Division
Notably, the sign of the remainder should be the same as that
of the dividend. This results in an adjustment problem of the

remainder at the last stage of the division. Usually a full
wordlength adder is required to handle this problem. In our
design, both the dividend and the divider are converted into
positlive numbers before the normalization. Their sign
information is then kept and used to select the result
generated by the 35-b carry save adder (CSA) for the
remainder adjustment. This will simplify the entire design
and have not loss regarding speed.

Data Flow Control Unit

Our cell-based design for the 64b/32b signedhnsigned integer
divider is given in Fig. 4. Notably, the hardware penalty of using
the radix-4/2 division is that of a total of 133+65+4+67 2-to-1
MUXs plus a few simple primitive gates are needed in addition
to the original W of a pure radix-4 selection function.
However, the gain regarding the timing to handle the adjustment
for 1 bit qjuotient is worthwhile.

32,J divisor d dividend x 1

-k, -v 2
, 1 32 bitd i l 35 bit WC !+ 7 1 70 bit WS

-r- 3 4
r'l
e-

Radix4 1

A i

4 7 Selection
Fundon

, Table 1 Lr - 1

/ 36bltCSA 1

Fig 4 The design architecture of the 64b/32b signedhnsigned
integer divider

3. PERFORMANCE EVALUATION &
CHIP IMPLEMENTATION

In order to compare with currently available design
methodologies for long integer dividers, we extend our design
approach by using the Verilog HDL incorporated with
COMPASS 0.6 pm 1P3M cell library (version 3.0) to synthesize
such a 128b/64b signedhnsigned divider by SYNOPSYS. The
detailed numerical report is shown in Table 2.

Although the longest delay is almost 18 ns, it doesn't imply that
the shortest period of the working clock has to be the same value.
The reason is that the division by the digit-recurrence method
requires many "steps"; while each step is triggered by the

1-44 1

working clock. We will find out what the maximum working
frequency is later by simulations. In fact, the digit-recurrence is
based on the clock cycles. We, thus, randomly generate over
30,000 test vectors to find out the possible shortest period of the
clock. The result shows that a clock with 12 ns period will
provide correct division result.

combinational

control unit

Part name [Total area (gate count)l critical delay (ns)

17946.667969 17.56

347.993408 1 7.25

Design

rpl model of [I 11

bla model of [1 11

divider of P-I1 [13

Our design

Table 2 : Performance evaluation by SYNOPSYS.

In order to realize the performance improvement of the proposed
design in the long integer division, the following table shows the

Area (gate longest delay
count) (gate delays)

100,000 2 12,000 ns

m 100,000 2 1,200 ns

(NA) (NA)

5 20,000 4 1 x 12=492 ns

longest delay
(cycles)

33 (64bI32b)

41

Table 3: Performance comparison of 128b164b integer dividers.

The above results show that our design indeed possesses the
advantages regarding the area and the speed.

We also compare our work with currently available CPUs'
integer divider, including [2][3], to present the superior design of
our divider chip, as shown in Table 4. Note that the entry in
Table is the number of clock cycles.

Table 4: Cycle-based performance comparison of 64bI32b
integer dividers.

The-real 64bh2b chip has been tested by IMS digital tester of
ATS Co. The die photo of the chip is shown in Fig. 5. The chip
has been tested by 1000 groups of dividend and divider pairs,
which are randomly generated, and the results of corresponding
quotient and remainder pairs are all correct.

Fig. 5 The dic photo ofthe chip.

4. REFERENCES
[I] "Pentium Pro Family Developer's Manual," Intel, 1996.
[2] L. Gwennap, "Intel's P6 uses decoupled superscaler design,"

Microprosessor Report, vol. 9, no. 2, Feb. 1995.
[3] L. Gwennap, "Klamath extends P6 family," Microprocessor

Report, vol. 11, no. 2, Feb. 1997.
[4] A. E. Bashagha, and M. K. Ibeahim, "Two's complement

high radix division," 1997 Inter. Symp. on Circuits &
Systems (ISCAS97), pp. 2088-2091, Hong Kong, June 1996.

[5] M. D. Ercegovac, and T. Lang, "Division and square root -
digit-recurrence algorithms and implementations," Reading :
Kluwer Academic Publishers, 1994.

[6] K. Hwang, "Computer arithmetic: principles, architectures,
and designs," Reading : John Wiley & Sons, 1979.

[7] M. D. Ercegovac, T. Lang, and P. Montuschi, "Very-high
radix division with prescaling and selection by rouding,"
IEEE Trans. on Computers, vol. 43, no. 6, pp. 909-917,
Aug. 1994.

[SI J. F. Cavanagh, "Digital computer arithmetic," McGraw-Hill,
Inc., 1984.

[9] J. P. Hayes, "Computer architecture and organization,"
McGraw-Hill, Inc., 1988.

[lo] H. R. Simivas, and K. K. Parhi, "A fast radix-4 division
algorithm," IEEE Inter. Symp. on Computer Arithmetic, pp.
3 1 1-3 14, Santa Monica, 1994.

[I l l K. Baty, "Design Ware," Reading : pp. B-3 to B-12,
Synopsys, Inc. 1996.

1-442

