
BUS GUARDIAN DESIGN FOR AUTOMOBILE NETWORKING ECU NODES COMPLIANT

WITH FLEXRAY STANDARDS

Gang-Neng Sung, Chun-Ying Juan, and Chua-Chin Wang, Senior Member, IEEE

Department of Electrical Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan 80424.

Email: ccwang@ee.nsysu.edu.tw

ABSTRACT

This paper presents a Bus Guardian Design used in an in-car

network compliant with FlexRay standards. FlexRay is a new

standard for data/signal communication among electronic de-

vices installed in a vehicle. An 8051-compatible microcon-

troller was used to implement the system controller. Most

important of all is that the Bus Guardian (BG) in charge of se-

curity and safty is proposed and implemented. This work was

implemented by hardware description language (HDL) and

verified by Xilinx field-programmable gate array (FPGA).

Keywords—FlexRay, baseband, bus guardian, automo-

bile electronic, in-car networking, 8051.

1. INTRODUCTION

Car electronics has been deemed as the 4th ”C” right after

Computer, Communication and Consumer electronics. The

car electronics include power train, chassis safety, peripheral

electronics control system, telematics communication system,

in-car networking, etc. Many novel electronic devices have

been introduced and installed in recently publicized cars, e.g.,

car TVs. Therefore, an in-car network has been proposed to

control and supervise all of the automobile electronics. Prior

in-car networks were mainly composed of CAN (controller

area network) or LIN (Local Interconnect Network) which

emphasized that safety and reliability. However, the limited

1 Mbps bandwidth is not sufficient for rapid growth of the

data/signal in an in-car networking. By contrast, MOST (Me-

dia Oriented Systems Transport) [1] network provided a very

efficient mechanism for transporting high volumes of media

information, but lack of control capability.

FlexRay is a new communication protocol proposed by

several automobile power houses, including BMW, Daimler-

Chrysler, General Motos, Freescale, Philips, Robert Bosch,

Volkswagen, etc. It is designed to provide message and data

This research was partially supported by National Science Council under

grant NSC96-2628-E-110-018-MY3.

exchange among electronic devices installed in a vehicle. It

will not replace the existing network, but it can combine and

integrate with existing network systems, including CAN, LIN,

MOST and J1850 protocol, etc. FlexRay requires 10 Mbps

data rate in either one of the two channel of an ECU (elec-

tronic control unit). If a single channel is used alone, the

speed of the total data rate is expected to be 20 Mbps. There-

fore, even the video signals, multimedia and control signals

can communicate via the FlexRay system in such a high band-

width. The ultimate goal is that the automobile is X-by-wire

(X = steer, break, accelerate, A/V, safety, etc.). Fig. 1 shows

that the explosive view of a FlexRay network. Fig. 2 shows

the block diagram of ECU nodes connected in a FlexRay sys-

tem. Each ECU node contains at least a Host, a Communica-

tion Controller [2], two Bus Drivers and two Bus Guardians.

 
 Engine


 
 Transmission


 
 ...More


 
 Video system


 
 Mobile phone


 
 Radio


 
 ...More


 
 Door locks


 
 Climate control


 
 Seat Control


 
 ...More


 
 Steer By-wire


 
 Bake By-wire


 
 ...More


Gateway 2


(Powertrain)


Gateway 1


(Telematics)


Gateway 3


(Body/Comfort)


Gateway 4


(Chassis)

Gateway n


 
 ECU n


Diagnostics

FlexRay Backbone


F

l
e


x

R


a

y


/
C

A


N



M

O


S

T




C

A


N



F

l
e


x

R


a

y




Fig. 1. Explosive view of a FlexRay network

Communication


Controller

Host


Bus Guardian


A


Bus Driver


A


Cannel 2


Cannel 1


E



C



U



 

N



o



d



e

 


1



Bus Guardian


B


Bus Driver


B


E



C



U



 

N



o



d



e

 


2



Communication


Controller

Host


Bus Guardian


A


Bus Driver


A


Bus Guardian


B


Bus Driver


B


Fig. 2. ECU node on the FlexRay bus



2. BUS GUARDIAN DESIGN

The proposed Bus Guardian is in charge of security and

safety for FlexRay communications systems. It protects a

channel from interference caused by any message that is not

aligned with the communication schedule. The function of

the Bus Guardian is required to supervise the communica-

tion controller during different protocol operating modes like

wakeup, communication startup, and synchronized operation.

2.1. Bus Guardian Operation Modes

Fig. 3 gives an overview of the Bus Guardian operation

modes as well as mode transitions. There are four modes

which are described as follows:

BG_FailSilent
BG_WakeUp


BG_Guarding


BG_Config


BG configuration completed


AND


SPI command


from host


Fixed timeout


after detection of TxEN activity


OR


SPI command


form host


SPI command


from host
 SPI command


from host


BG configuration completed


AND


SPI command


from host


Schedule violation error


OR


Watchdog error


ARM timing error


OR


SPI command


from host


External Reset


OR


Power on


Fig. 3. Bus Guardian functional operation diagram

2.1.1. BG Config mode

Configuration registers in the Bus Guardian can only be ac-

cessed in BG Config mode, which can only be entered from

BG FailSilent mode. The configuration register starts from

the address which is programmed and increments automat-

ically in every SPI (serial peripheral interface) communica-

tion period until the stop instruction (FFFFh) is encountered.

The stop instruction is written by the Host. After writing the

stop instruction, the Host shall start verification of the con-

figuration data via read back. Then, the Bus Guardian sets

the configuration complete flag, while the operation mode is

switched back into BG FailSilent mode.

2.1.2. BG FailSilent mode

In BG FailSilent mode, the bus can not be accessed. It is the

initial mode of the Bus Guardian when an error occurs. As

soon as an error occurs, an interrupt signal is generated and

the corresponding error flags are set. Besides, BG FailSilent

mode can be entered from any other operation mode by an

SPI instruction from the Host. BG FailSilent mode can only

be left by an SPI instruction from the Host.

2.1.3. BG WakeUp mode

In BG WakeUpmode, the communication controller can trans-

mit a wakeup message to the Bus Guardian and give the per-

mission to wake up the whole set of ECU nodes in the FlexRay

communication system. BG WakeUp mode can only be en-

tered from the BG FailSilent mode by an SPI instruction from

the Host.

2.1.4. BG Guarding mode

When Bus Guardian is configured (made earlier in BG Config

mode), the scheduler is initialized. Then, the bus guarding

function is active in BG Guarding mode. It provides the stan-

dard operation of the ECU node and can only be entered from

BG FailSilent mode by an SPI instruction form Host after

the configuration of the Bus Guardian is completed. In the

BG Guarding mode, the Bus Guardian dominates the com-

munication bus and detects errors.

2.2. Bus Guardian Implementation

The proposed Bus Guardian implementation is shown in

Fig. 4. Functional blocks are connected with 16-bit buses.

The detailed functionality of each functional block is described

in the following text.

System Controller


Signal Watchdog

Interrupt


Controller

Bus Control Guard


Configuration


Register


Host


Interface


WR_


RD_

SPI


R



D



_



R



D



_



W



R



_



W



R



_



T



x



E



N



R



x



E



N



A



R



M



B



G



E



M



T



B



G



T



E



C



L



K



I

N



T



N




SCSN


SCK


SDI


SDO

WR_


RD_


RC


Oscillator

CLK


Fig. 4. Block diagram of Bus Guardian

2.2.1. System Controller

The System Controller of the Bus Guardian is implemented

by an 8051-compatible microcontroller (µC). It is in charge

of triggering all internal Bus Guardian states and operating

modes, decoding and executing SPI commands, and error han-

dling. The System Controller communicates with the Host via

the SPI interface to select the operating mode. If an error is re-

ported by the Signal Watchdog or by the Bus Control Guard,



the System Controller writes the corresponding status infor-

mation to the registers in SPI and sends an interrupt request

to the Host.

2.2.2. Bus Control Guard

The bus guardian scheduler is contained in the Bus Control

Guard. The Bus Control Guard enables transmitting with

Communication Controller via the bus only according to the

configured bus guardian scheduler. The schedule includes ac-

tive slots in the static segment, the dynamic segment, and the

symbol window. The static segment is a portion of the com-

munication cycle where the media access is controlled via a

static Time Division Multiple Access (TDMA) scheme. Dur-

ing the static segment, the access of the media is determined

solely by the progression of time. The dynamic segment and

the symbol window are optional elements of the communica-

tion cycle. In addition, the Bus Guardian may be configured

to enable or disable transmit access during the dynamic seg-

ment. If the communication controller attempts to transmit

to the bus when it is not allowed, the Bus Control Guard dis-

ables transmit access to the medium and the Bus Guardian

reports an error to the Host. The Bus Guardian stays in the

BG FailSilent mode after detecting an error. The Host must

initiate a mode transition to the BG Guarding mode in order

to recover from such an error scenario.

The scheduler inside the Bus Control Guard is clocked

directly with the MT (microtick) signal from the Communica-

tion Controller such that it can synchronize every ECU in the

FlexRay communication system. The ARM signal is gener-

ated by the Communication Controller to indicate the start of

the communication cycle to the Bus Guardian. The TxEN sig-

nal is a transmission enable signal issued by Communication

Controller. If the TxEN signal is enabled out of the commu-

nication schedule, the scheduler denies the bus access and the

BGE (bus guardian enable) signal is not enabled to stop the

signal transmitting to the bus.

2.2.3. Serial Peripheral Interface (SPI)

The serial peripheral interface provides the communication

path between Host and Bus Guardian. It is used for Bus

Guardian configuration and for exchange of status and control

information. The SPI interface supports full duplex operation

at a data rate of at least 1 Mbit/s.

The SPI interface provides four interface signals, in-

cluding chip select. Bit sampling is performed at the falling

clock edge and the data is shifted at the rising clock edge. SPI

interface signals are implemented as follows:

• SCSN: The SPI chip select, active “Low”. The Host

enables this signal to start one SPI communication pe-

riod.

• SCK: The SPI clock, default voltage level is “Low” due

to low-power concept and save the power consumption.

• SDI: The SPI data input. The Bus Guardian receives

data from the Host through this signal.

• SDO: The SPI data output, floating during “High” level

of pin SCSN. The Bus Guardian transmits data to the

Host through this signal.

Within one SCSN cycle, there are exactly 16 clock pe-

riods. Any deviation in the number clock periods results in

an SPI Failure Interrupt. The access, thus, is ignored by Bus

Guardian. The data of SPI could be the instructions of the

Host or the parameters of the communication configuration.

Fig. 5 shows the timing diagram in one SPI communica-

tion period. A 16-bit instruction can be split into H8 and L8,

which length are 8 bits each. In the H8 segment, the 8th bit de-

notes to read or write, the 5th to 7th bits are the register type,

and the 1st to 4th bits are the Bus Guardian operation mode

or register bit selector. In the L8 segment, the entire 8 bits

denote the start memory address in the burst mode when the

registers are accessed. When switching the operating mode,

the lower 4 bits are ECC code which can ensure that the in-

structions are correct and the higher 4 bits are ignored. The

SPI instruction frame is shown in Fig. 6.

SCSN


SCSN

01
 02
 03
 15
 16


sampled


SDI


SDO

float


X
 MSB
 14
 13
 01
 LSB
 X


MSB
 14
 13
 01
 LSB
X


Fig. 5. SPI timing diagram

Bus guardian operation mode /


Register bit selector

Register selector
W / R


0
4
7


H8


L8


0
4


Fig. 6. A SPI instruction frame

2.2.4. Signal Watchdog

The Bus Guardian contains watchdog circuit to moritor the

clock frequency and Bus Guardian clock signals delivered

from the Communication Controller. Detection of the macrotick

signal (MT) is performed by means of the bus guardian tick

signal (BGT), which is also provided by the Communication

Controller. The Signal Watchdog checks the ratio between the



gdBGStaticSlot


Static Slot 1

ARM trigger


ISG


Post-Enable Part


Pre-Enable


Part


Static Slot 2


Pre-Enable


Part


gdBGStaticSlot


Last Static Slot (32)
 Dynamic Segment


gdBGDynSegment


Pre-Enable


Part


Pre-Enable


Part


Post-Enable Part


ISG


(a)


(b)


Fig. 7. Bus Guardian timing within the static segment

MT period and the BGT period to detect if there is any devi-

ation from the nominal ratio exceeding a pre-defined config-

urable limit. The Signal Watchdog also supervises the BGT

period using the Bus Guardians local clock signal CLK as a

reference which is generated by an RC oscillator circuit or an

external clock (ECLK). The Bus Guardian supervises all of

the signals from the Communication Controller that are used

to synchronize the bus guardian. Additional fail detection cir-

cuits are required to detect missing clock signals at the MT

and BGT inputs and at the local clock source.

The BGT signal is directly derived from the clock os-

cillator of the Communication Controller by a frequency di-

vider and its period is not influenced by the MT clock cali-

bration. Supervision of the BGT signal is performed by the

internal clock signal CLK of the Bus Guardian. In short, the

Bus Guardian contains clock signal fail detectors in order to

detect missing signals at the Bus Guardian inputs MT, BGT,

and ECLK.

2.2.5. Interrupt Controller

The interrupt controller is responsible for allocating the bus

in the Bus Guardian and transmitting the interrupt signal to

the Host. The priority of the bus privilege form high to low is

assigned to Signal Watchdog, SPI, and Bus Control Guard.

3. IMPLEMENTATION AND VERIFICATION

This design is carried out by Verilog HDL code and veri-

fied by Xilinx Virtex-4 MB Development Board. The total

equivalent gate count of the proposed design is 46,166 includ-

ing the 8051-compatible microcontroller. The system clock is

80 MHz. In this design, we implement the system controller

with the 8051-compatible microcontroller to make the Bus

Guardian more flexible. Different engineers can enhance or

add different operation modes based on the standard FlexRay

specification to achieve higher safety or more powerful oper-

ation. Table 1 gives an comparison with [3]. Fig. 7 (a) shows

the Bus Guardian timing within the static segment with the

MT period is 600 ns, the BGT period is 300 ns, the ECLK pe-

riod is 1 us, and the RC CLK period is 1 us. Fig. 7 (b) shows

the Bus Guardian timing at the beginning of the dynamic seg-

ment. All of the simulations are verified to be compliant with

the FlexRay specification.

Gate Count Main Clock

[3] 60,000 47 MHz

ours 46,166 (with a µC) 80 MHz

Table 1. Comparison in gate count and clock rate

4. CONCLUSION

This paper proposed a hardware implementation of Bus Guardian

in the FlexRay automotive communication system using CMOS

cell-based design flow. In the system controller design, we

use the 8051-compatible microcontroller which can provide

more flexibility. The implementation on Xilinx FPGA justi-

fies the superiority of the proposed design.

Acknowledgment

The authors would like to express their deepest gratefulness

to CIC (Chip Implementation Center) of NAPL (National Ap-

plied Research Laboratories), Taiwan, for their thoughtful chip

fabrication service. The authors also like to thank “Aim for

Top University Plan” project of NSYSU and MOE, Taiwan,

for partially supporting this investigation.

5. REFERENCES

[1] H. Schopp, and D. Teichner, “Video and Audio applica-

tions in vehicles enabled by networked systems,” Inter-

national Conference on Consumer Electronics, pp. 218-

219, June 1999.

[2] A. Techmer, and P. Leteinturier, “Implementing

FlexRay on Silicon,” Proceedings of the International

Conference on Networking, International Conference on

Systems and International Conference on Mobile Com-

munications and Learning Technologies, 2006 (ICNI-

CONSMCL ’06), pp. 34-40, April 2006.

[3] P. M. Szecowka, and M. A. Swiderski, “On hardware

implementation of flexray bus guardian module,” Inter-

national Conference on Mixed Design of Integrated Cir-

cuits and Systems 2007 (MIXDES ’07), pp. 309-312,

June 2007.


