
High SFDR Pipeline ROM-less DDFS Design on

FPGA Platform Using Parabolic Equations

Chua-Chin Wang, Senior Member, IEEE, Hsiang-Yu Shih, Wei Wang†, Senior Member, IEEE,

Department of Electrical Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan 80424

Email: ccwang@ee.nsysu.edu.tw

Abstract— A 4-stage pipeline ROM-less direct digital frequency
synthesizer (DDFS) with equal division interpolation is proposed
in this work. To attain higher SFDR (spurious free dynamic
range) and faster clock rate, the hardware cost and delay
using different segments with various interpolation equations
are analyzed systematically to explore the optimal solution. The
parabolic equations with proper selection of coefficients and
factorized operation orders based on optimized hardware cost
and delay are finally utilized to enhance SFDR. The proposed
design is demonstrated by the physical implementation on Altera
FPGA platform. The average SFDR is measured to be 68.4242
dBc with 1.1659 dBc deviation over 33 times of experiments. The
measured SFDR is proved to outperform many previous DDFS
works even if they were implemented on silicon.

Keywords -ROM-less DDFS, spurious free dynamic range
(SFDR) parabolic polynomial interpolation, pipeline structure,
frequency synthesizer

I. INTRODUCTION

Frequency synthesizers have been one of the most impor-

tant roles in recent communication systems, mobile phones,

medical bio-sensing devices, and global positioning system

(GPS). They are mainly in charge of generating digital or

analog signals with various frequencies. DDFS was firstly

proposed in 1971’s [1], where the amplitude data are stored

in ROM-based look-up table. A generic DDFS structure is

shown in Fig. 1. Since there is no need of the feedback

loop and VCO (voltage-controlled oscillator), DDFSs are able

to achieve fast frequency switching and the wide output

range more easily than the PLL-based solutions. However, the

bottleneck of DDFS implementation is the generation of a pure

sinusoidal output. When the demand of high resoltuion of the

sinusoidal output is required, the size of the ROM increases

exponentially resulting in the major drawback of the ROM-

based implementation architecture.

By contrast, many researches have also reported ROM-

less DDFS designs, e.g., [9], [10], where different algorithms

were used instead of ROM tables to realize the phase-to-

amplitude converter (PAC). These ROM-less DDFS works

Prof. C.-C. Wang is the contact author. He is with Department of Electrical
Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424. (e-
mail: ccwang@ee.nsysu.edu.tw).

†Prof. W. Wang is with College of Electronics Engineering, Chongqing
University of Posts and Telecommunications (CQUPT), 400065, Chongqing,
P. R. China.

demanded complicated polynomials to carry out the phase-

to-sine mapper. However, any polynomial whose order is

higher than three was found inefficient to be implemented if

considering the feasibility of hardware realization [5]. Besides,

the spurious free dynamic range (SFDR) of sine wave will

be limited. Recently, several ROM-less DDFS [2], [3], [4],

[6] has been developed to realize the PAC, i.e., the critical

path of DDFS. However, these DDFSs based on 2nd-order

polynomials still can not achieve high SFDR performance

without sacrificing the speed.

To increase SFDR and reduce power dissipation, the 2nd

order polynomials with equal division in a pipeline archi-

tecture is proposed in this design. Most important of all,

different orders of mathmetical operators of the 2nd-order

polynomial are fully analyzed to find out the optimal SFDR,

output frequency and power consumption.

Fig. 1. Generic DDFS structure

II. DDFS DESIGN USING FACTORIZED PARABOLIC

EQUATIONS

The sine wave is governed by the non-linear equation,

f(x) = sin(x). Theoretically, synthesizing a full sinusoidal

wave (0 ∼ 2 · π) can be achieved by synthesizing one quarter

of the full cycle, namely (0 ∼
1

2
·π), and then bilateral sysmetry

with respect to a vertical line and x-axis, as shown in Fig. 2,

is used to generate the other 3 quaters. DDFS means to take

advantage of digital logic and algorithms to generate a wave

978-1-5386-4441-6/18/$31.00 ©2018 IEEE

form close to the real sinusoidal wave. Thus, the interpolation

approach using low-order polynomials (or called equations) is

widely adopted to speed up the sine wave generation.

Fig. 2. Symmetry of sine wave

A. Interpolation schemes for DDFS

The selection of interpolation schemes will directly affect

error, speed, and particularly SFDR. Three common inter-

polation schemes using low-order polynomials are linear in-

terpolation (1st-order polynomials), quasi-linear interpolation

(combination of 1st-order and 2nd-order polynomials), and

parabolic interpolation (2nd-order polynomials), [7], [8]. The

linear interpolation apparently has the edge of simplicty with

poor accuracy. By contrast, the parabolic interpolation taking

advantage of the similarity between sin(x) and the parabolic

function. However, the price to pay is high computation

complexity. As for the quasi-linear interpolation, the synthesis

of the sine wave close to the origin is based on linear

polynomials, and that of the region close to 1

2
π is based on the

parabolic polynomials. That is, the quasi-linear interpolation

manages to fully take advantage of 1st and 2nd polynomials

to attain the minimal error. However, this scheme needs more

sophisticated logic control and region division considerations.

Besides the selection of different interpolation schemes, how

the entire region to be synthesized is segmented is another

issue to be resolved. Theoretically, more segments are utilized

and synthesized will result in higher accuracy. However, the

design complexity will increase, and the speed will be reduced.

For instance, will the 8-segment division of 0 ∼
1

2
π have a

better SFDR than 4-segment? Or the SFDR performance of

equal segements better than that of unequal segments? How

to partition the entire 0 ∼
1

2
π into unequal segments so that

a better SFDR will be achieved? All of these puzzles are

expected to be answered substantially.

To explore the scenarios given different interpolation ap-

proaches and different segmentations, SFDR and error simu-

lations by MATLAB are summarized in Table I. The SFDR

and maximum error results of parabolic interpolation with

8 segments is found to be better than that of quasi-linear

interpolation with 32 segments. Besides, if the design com-

plexity, area overhead, and switching speed are taken into

consideration, the parabolic interpolation with 8 segments

seems to be a better option.

TABLE I

PERFORMANCE GIVEN DIFFERENT SEGMENTATION AND INTERPOLATION

Parabolic Quasi-linear Linear
interpolation interpolation interpolation

Segment Max. Error SFDR Max. Error SFDR Max. Error SFDR

4 4.97× 10
−4 86 1.28× 10

−3 71 6.29× 10
−3 53

8 6.30× 10−5 106 4.67× 10−4 81 1.59× 10−3 65

16 7.92× 10−6 123 1.35× 10−4 93 4.01× 10−4 78

32 9.97× 10
−7 142 3.61× 10

−4 105 1.00× 10
−4 90

When it comes to the performance priority, SFDR is well

recognized to be more important than the maximum error

such that the parabolic interpolation method is apparently

better than the other two methods. We then explore the error

distribution of different segmentations of the parabolic interpo-

lation method by MATLAB simulations. Fig. 3 demonstrates

the error distribution of 4 different segmentation scenarios.

Notably, although 32-segment partition has the minimal error

distribution, 8-segment parition with over 100 dBc SFDR is

much more easy to be realized on silicon. Thus, the parabolic

interpolation with 8-segment partition is chosen to be realized

in this investigation.

Fig. 3. Error distribution of different segmentations

1) Parabolic polynomial interpolation derivation: A quad-

rant of sinusoid is partitioned into i segments, where every

segment is approximated by the 2nd-order parabolic equation,

and each segment has m sampling points, as shown in Eqn.

(1).

yij(xij) = (aixij + bi)xij+ci, i = 1 ∼ 8, j = 1 ∼ m (1)

According to the calculation method of [5], the least square

method is used to attain the coefficients, we differentiate Eq.

(1) to get Eqn. (2) such that the optimal “ai” and “bi“ will be

found.

y
′

ij(x) = 2aixij + bi, i = 1 ∼ 8, j = 1 ∼ m (2)

2) Selection of pipelining stages: Pipelining is a well-

known method to enhance clock rate and throughput. However,

how many stages of pipelining is needed in the 8-segment

DDFS design using 2nd-order parabolic polynomial, namely

Eqn. (1), is the next issue to be resovled. Although higher order

of pipelining is feasible, the increase of clock rate becomes

very obscure and the hardware cost turns into quite significant.

Therefore, a 4-stage pipeline structure is selected to carry out

the proposed DDFS design as shown in Fig. 4

Fig. 4. Diagram of 4-stage pipeline DDFS

3) SFDR simulation by MATLAB: The above 4-stage DDFS

design is firstly simulated by MATLAB using the toolbox

therewith to attain the sinusoidal outcome as shown in Fig.

5, where the SFDR is also found to be 74 dBc.

Fig. 5. Synthesized sine wave genearted by MATLAB

III. VERIFICATION BY FPGA EMULATION

1) FPGA emulation and experiment: The proposed 4-

stage pipeline DDFS using parabolic equations is coded using

Verilog and downloaded to Altera DE2 FPGA platform, which

is product no.: EP2C35672C6, where a 10-bit DAC (digital to

analog converter, ADV7123) is included. The experimental site

is shown as Fig. 6, where LeCroy WaveRunner 610Zi is used

as an OSC to display the measurement results.

Fig. 6. FPGA experimental setup

Fig. 7 is the measurement display on the OSC, where the

power performance is displayed by dBm. If it is converted into

dBc, the readings must be doubled by the basics definitions in

Eqn. (3) and (4). Hence, the dBc is normalized to be 68, since

the reading of dBm is 34. The experiment has been carried

out 33 times to attain a meaningful statistic result. The overall

histogram is shown in Fig. 8, where the average is 68.4242

dBc, and all of the measured readings are distributed within

≤ 3σ, where σ = 1.1659 dBc, which justify the credibility and

repeatability of the measurement.

dBm = 10 · log(
P

1mW
) (3)

2 · dBm = dBc → 34 dBm = 68 dBc (4)

The reason why the measured SFDR lower than that derived

by MATLAB is resulted from the imperfection of DAC, which

is the 10-bit DAC (ADV7123) inlcuded in the FPGA. The INL

(integral nonlinearity) disclosed in ADV7123 is given in Fig.

9, which is as high as 0.75 LSB.

2) Performance comparison: Referring to Table II, the pro-

posed design is compared with several recent DDFS reports.

Our design is the only one not implemented on a single silicon.

By contrast, it is the only one measured by FPGA emulations.

However, the SFDR attained by our design outperforms the

rest of DDFS designs. This comparision proves that the

effectiveness of the proposed design method.

TABLE II

SFDR PERFORMANCE COMPARISON

[2] [4] [12] [13] this work

year 2013 2016 2017 2017 2018

process µm CMOS 0.13 0.18 0.065 0.18 FPGA

FCW (bits) 32 17 24 16 32

O/P resolution (bits) 12 10 10 16 24

clock rate (MHz) 650 100 2000 1000 100

verification Meas. Meas. Meas. Simu. Meas.

SFDR (dBc) 60 52.47 56.5 49.1 68.4242

IV. CONCLUSION

According to the measurement by FPGA emulation and the

comparison with recent DDFS designs realized by expensive

CMOS processes, our design demonstrates the superior DDFS

performance provided that the DAC has a subpar INL. This

outcome justifies that the proposed factorized equations and

pipeline structure are very efffective in the implementation of

high-SFDR DDFS designs.

SFDR = 34 dBm = 68 dBc

Vsine

(Voltage)

(dBm)

Fig. 7. SFDR measurement on FPGA platform by spectrum analysis

Fig. 8. Histogram of SFDR measurement

ACKNOWLEDGEMENT

This investigation is partially supported by Ministry of Sci-

ence and Technology, Taiwan, under grant MOST 107-2218-

E-110-004-. The authors would like to express their deepest

gratefulness to Chip Implementation Center of National Ap-

plied Research Laboratories, Taiwan, for their thoughtful chip

fabrication service and EDA tool support.

REFERENCES

[1] J. Tierney, C. Rader, and B. Gold, ”A digital frequency synthesizer,”
IEEE Trans. on Audio and Electroacoustics, vol. 19, no. 1, pp. 48-57,
Mar. 1971.

[2] J. Cali, X. Geng, F. Zhao, M. Pukish, F. Dai, and A. Aklian, ”A 650
MHz DDFS for stretch processing radar in 130nm BiCMOS process,”
in Proc. European Microwave Integrated Circuit Conference (EMICC),
pp. 33-36, Oct. 2013.

[3] M. Padash, S. Toofan, and M. Yargholi, ”A 9-bit, 1-giga samples per
second sine and cosine direct digital frequency synthesizer,” in Proc.
Iranian Conf. on Electrical Engineering (ICEE), pp. 438-442, May 2014.

[4] P. R. B. de Carvalho, J. A. A. Palacio, and W. Van Noije, ”Area
optimized CORDIC-based numerically controlled oscillator for electrical
bio-impedance spectroscopy,” inProc. IEEE Int. Freq. Control Sympo-

sium (IFCS), pp. 1-6, May 2016.

[5] C.-C. Wang, C.-H. Hsu, C.-C. Lee, and J.-M. Huang, ”A ROM-less
DDFS based on a parabolic polynomial interpolation method with an
offset,” Journal of Signal Processing Systems, vol. 61, pp.1-9, May 2010.

Fig. 9. DAC INL

[6] C.-H. Hsu, Y.-C. Chen, and C.-C. Wang, ”ROM-less DDFS using non-
equal division parabolic polynomial interpolation method,” in Proc. Int.

Symp. on Integrated Circuits (ISIC), pp. 59-62, Dec. 2011.
[7] X. Geng, F. F. Dai, J. D. Irwin, and R. C. Jaeger, ”An 11-Bit 8.6 GHz

direct digital synthesizer MMIC with 10-Bit segmented sine-weighted
DAC,” IEEE Journal of Solid-State Circuits (JSSC), vol. 45, no. 2, pp.
300-313, Feb. 2010.

[8] C.-C. Wang, J.-M. Huang, Y.-L. Tseng, W.-J. Lin, and R. Hu, “Phase-
adjustable pipelining ROM-less direct digital frequency synthesizer with
a 41.66-MHz output frequency,” IEEE Trans. Circuits Syst.- II Exp.

Briefs, vol. 53, no. 10, pp. 1143-1147, Oct. 2006.
[9] B. Pontikakis, H.-T. Bui, F-R. Boyer, Y. Savaria, “Precise free-running

period synthesizer (FRPS) with process and temperature compensation,”
IEEE MidWest Symposium on Circuits and Systems 2007 (MWSCAS

’07), pp. 1118-1121, Aug. 2007.
[10] P. Sotiriadis, “Timing and spectral properties of the Flying Adder fre-

quency synthesizers,” IEEE International Frequency Control Symposium

2009, pp. 788-792, July 2009.
[11] Y. Song, and B. Kim, “A 250 MHz Direct Digital Frequency Synthesizer

with Delta-Sigma Noise Shaping,” 2003 IEEE Int. Solid-State Circuits

Conf. (ISSCC 2003), vol. 1, pp. 472-509, Feb. 2003.
[12] A. M. Alonso and X. Yuan and M. Miyahara and A. Matsuzawa, “A

2 GS/s 118 mW digital-mapping direct digital frequency synthesizer in
65nm CMOS,” 12th European Microwave Integrated Circuits Confer-

ence (ISSCC 2003), pp. 228-231, Oct. 2017.
[13] R. Suryavanshi and S. Sridevi and B. Amrutur, “A comparative study

of direct digital frequency synthesizer architectures in 180nm CMOS,”
International conference on Microelectronic Devices, Circuits and Sys-

tems. (ICMDCS 2017), pp. 1-5, Aug . 2017.

