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Abstract—A 4.15 W SIDO buck converter is proposed in 

this paper. By using the adaptive PCCM control, the FW 

(freewheel) phase is automatic adjusted to improve the 

efficiency, which is the weakness in traditional PCCM control.  

Besides, the current mode comparison is utilized, such that the 

comparators are not required for the mode control. The 

proposed design is implemented using TSMC 0.18 μm CMOS 

HV process. Based on the simulation results, the circuit 

achieves the cross regulation of 0.097 mV/mA and 0.066 

mV/mA for the dual outputs with the load current variation 

from 0.5 A to 0.4 A and from 0.45 A to 0.5 A, respectively. 

Keywords—SIDO, buck converter, cross regulation, PCCM.  

I. INTRODUCTION  

With the fast development of semiconductor technology, 
there are lots of components used in different electric 
products. It requires different power supply voltages, such 
that SIDO (Single inductor dual output) DC/DC converters 
are widely used to save the system cost and to reduce the 
system size [1]-[12].  

Besides the load regulation, the cross regulation is another 
important specification to refer to cross effects caused by 
load variation of the dual outputs for the SIDO DC/DC 
converter. For a traditional SIDO buck converter, the cross 
regulation is not a problem when it operates in DCM because 
the driving current for the dual outputs, VOA and VOB, are 
separated, as shown in Fig 1(a) [2], [5]. However, the DCM 
is difficult to use for large driving current. An interleaving 
control is presented for the SIDO DC/DC converter to 
improve the current in CCM [3]. Referring to Fig. 1 (b), 
there are 4 phases in a period. Phase 1 and phase 4 are used 
to drive the first output, VOA. Phase 2 and 3 are for the 
second output, VOB. Although the driving current is increased, 
the control circuit is very complex. Power distributive 
control is another widely used method for large driving 
current in CCM [4], [7]-[9], because the control circuit is 
easy to implement. Referring to Fig. 1 (c), phase 1 is to 
charge the inductor. Phase 2 and phase 3 are used to drive the 
dual outputs, VOA and VOB, respectively. Because the driving 
currents of the dual outputs are successive for the above 
methods in CCM, the cross regulation is difficult to optimize.  
PCCM (Pseudo continuous conduction mode) is presented to 
improve the cross regulation by adding an additional 
operation phase using a freewheeling switch [1], [10]-[12].  
As shown in Fig. 1 (d), in the FW (Freewheel) phase, the 
inductor current flows through the FW switch and the 
driving current for the dual output is separated such that the 
cross regulation is improved. However, the efficiency is poor 
for the PCCM control, because of the current waste in the 
FW phase caused by the parasitic resistor of the FW switch. 

The attenuation of efficiency becomes more serious when the 
driving current is large. Thus, traditional PCCM control is 
not a good choice for large power application. 

In this work, a 4.15 W SIDO buck converter is proposed 
for the application of the 12 V miniature AUV (Automatic 
underwater vehicle) system [13]. By using the adaptive 
PCCM control, the FW phase is automatic reduced to 
improve the efficiency in large driving current application. 
The proposed design is carried out using TSMC 0.18 μm 
CMOS HV process. The simulation results show that the 
cross regulation is 0.097 mV/mA and 0.066 mV/mA for the 
dual outputs, VOA and VOB, respectively. 
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Fig. 1 Operating waveforms of IL in traditional SIDO buck converters using 
(a) DCM (b) CCM with interleaving control, (c) CCM with power 
distributive control, and (d) PCCM.  

II. THE PROPOSED SIDO BUCK CONVERTER USING 

ADAPTIVE PCCM CONTROL 

Fig. 2 shows the block diagram of the proposed circuit, 
including a SIDO buck converter, a FW switch, an Adaptive 
PCCM control circuit, a PWM control circuit, a Mode 
Control circuit, a Current Sensor 1, two Current Sensors 2, a 
Driving circuit 1, and a Driving circuit 2. Except for the  off-
chip devices with gray shade, the proposed design includes 
the power MOS transistors on-chip. The power transistors, 
MP and MN, are 12 V devices to prevent the damage caused 
by the 12 V input voltage. The power transistors, MA and MB, 
are 5 V devices, because VY varies between 5 V and 3.3 V. 
The power transistors, MF1 and MF2, are also 12 V devices to 
serve as the FW switch. Current Sensor 1 detects the inductor 
current and generates the output signal, VSENSE, for PWM 
control circuit. The Adaptive PCCM control employs two 
Type 2 compensators for the frequency compensation for the 
two feedback signals, VfbA and VfbB. Besides, a counter and 
two switches, MEA and MEB, are used to select the control 
channel. The PWM control circuit utilizes a comparator, a 
SR-latch, and a Ramp & CLK Generator to generate the  
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Fig. 2 Block diagram of the proposed SIDO buck converter with adaptive PCCM control. 
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Fig. 3 Operating waveforms of the control signals.. 

PWM control signal, VPWM. The Driving circuit 1 includes 
the Soft-Start Circuit, a Nonoverlap circuit, a Level Shifter, 
and Drivers to provide the control signals, VH and VL, for MP 

and MN, respectively. The Driving circuit 2 includes a Level 
Shifter and Driver for generating the control signal, VF, for 
MF1 and MF2. The two Current Sensors 2 detect the two 
driving currents, IOA and IOB, and generate the control signals, 
VsenA and VsenB, respectively, for the Mode Control circuit.  

A. Adaptive PCCM Control 

Referring to Fig. 2 and Fig. 3, the Counter generate the 
control signals, VEA and VEB, to select the feedback signal 
path from VOA or VOB. When VEA is logic 0, the feedback 
loop from VOA is used. When VEB is logic 0, VOB is then 
feedback to generate the signal VC. VC is then compared to 
the sensed inductor current signal, VSENSE. VPWM is pulled 
high when the pulse CLK occurs. When VSENSE > VC, VPWM 
is then reset by the SR latch, which pulls VH and VL to logic 
1. It indicates that the inductor charging phase is finished and 
the inductor starts to discharge to the outputs. VA = logic 0 
and VB = logic 0 are used to enable the outputs, VOA and VOB, 
respectively.  Notably, VA becomes logic 0 when VF is logic 
high and VEA is logic 0.  VB is activated in the similar way.  
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Fig. 4 Schematic of the Mode Control circuit. 

B. Mode Control Circuit 

  Fig. 4 shows the schematic of the Mode Control circuit. VH 
and VL are used to control a charging current path for the 
capacitor, Cdc.   ̅̅ ̅ is used to control the discharging current 
path. The sensed current signals VsenA and VsenB is compared 
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in the current mode comparison. The charging current is 
expressed by the following equation.  

        {
                                   

                                
      (1) 

The duration of the FW phase is then determined by Eqn. (2). 

    
      

       
                                (2) 
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Fig. 5 Schematic of the Current Sensor 1. 

C. Current Sensor 1 and Current Sensor 2 

The Current Sensor 1 is revealed in Fig. 5. By choosing 
the feature size of the transistors of M1 and MP with the ratio 

equaling to 1/K, the current through M1 and M2 would be 
  

 
 

and      , respectively. Thus, the sensed internal current 

through MR equals to 
  
 
      .  The output voltage, VSENSE, 

is then expressed by the Eqn. (3). If       
  
 

, VSENSE is 

linearly proportional to the inductor current, IL.  

        (
  
 
      )              (3) 

Referring to Fig. 6, the Current Sensor 2 use the resistor, 
RsenA, to sense the load current. Because of the virtual short 
in the feedback loop, the voltage drops on Rc and RsenA  
equal to each other. Thus, the sensed current is       
     

  
       . The sensed voltage is obtained in Eqn. (4). 

      
           

  
            (4) 

D. Ramp and Clock Generator 

Fig. 7 shows the schematic of the Ramp and Clock 
Generator. The ramp signal is obtained by charging and 
discharging for the capacitor, Cramp. VrefH and VrefL are the 
external reference voltages to determine the peak and the 
valley of the ramp signal. CLK signal is generated by the SR 
latch. 
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Fig. 6 Schematic of the Current Sensor 2. 
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Fig. 7 Schematic of the Ramp & Clock Generator. 

III. IMPLEMENTATION AND SIMULATION RESULTS 

The proposed design is implemented using a typical 0.18 
μm CMOS HV process. Fig. 8 shows the simulated 
waveforms of the dual output voltages with the load currents 
of 0.5 A. The DC voltage of VOA is 5.0 V with ripple of 
120mV. VOB is  at 3.3 V with ripple of 270 mV.  The current 
ripple of IA and IB are 13 mA and 40 mA, respectively. Fig. 9 
reveals the simulated line regulation. The overshoot is 1 mV 
and 1.61 mV for VOA and VOB, respectively, when VIN varied 
from 12 V to 10.8 V.  For VIN changing from 10.8 V to 12 V, 
the overshoot for VOA and VOB is 1.68 mV and 1.5 mV, 
respectively. The line regulation is 1.4 mV/V and 1.34 mV/V 
for VOA and VOB, respectively. Fig. 10 shows the simulation 
results of the load regulation and the cross regulation for IA 
varied between 0.5 A and 0.4 A. The load regulation for VOA 
is 4.9 mV/mA. The cross regulation for VOB is 0.066 mV/mA. 
Fig. 11 reveals the simulated waveforms for IB varied 
between 0.5 A and 0.45 A. The load regulation of VOB is 6.3 
mV/mA. The cross regulation for VOA is 0.097 mV/mA.  The 
peak efficiency is simulated to be 86.315% for IA = 0.5 A 
and IB = 0.5 A. 

Table I summarizes the performance comparison with 
several prior works. The proposed design provides the best 
cross regulation, the maximum output current and the 
maximum output power. The FOM (Figure of merit) is given 
by including the peak efficiency, the maximum load current 
and the cross regulation. The proposed design possesses the 
best performance. 
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Fig. 8 Simulated waveforms with IA of 0.5 A and IB of 0.5 A. 
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Fig. 9 Simulated line regulation with VIN varied between 12 V and 10.8 V. 
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TABLE I.  COMPARISONS WITH PRIOR WORKS 

 [5] [6] [7] [8] [9] This Work 
Publication VLSI DAT CICC ISNE ISCAS MEJ SPIES 

Year 2010 2012 2013 2016 2019 2020 

Technology (μm) 0.35 0.35 0.18 0.13 0.18 0.18 
Implementation Meas. Meas. Sim. Sim. Meas. Sim. 

Type Buck Buck-Boost Buck-Boost Buck-Boost Boost Buck 
Control Method TMC OPDC TMC TMC OPDC TMC 

Input voltage (V) 3.6 3.7 1.6-3.3 1.8 0.5-1 12 

Output voltage(V) 1.8/2.5 5/1.8 2.5/3.6 2/2.5/1.5/2.2 1.8/1.2 5/3.3 
Frequency (MHz) 0.5 1 1 0.5 1 1 
Max Load(mA) 36/20 80/80 100/180 50/50/50 40/40 500/500 
Peak Efficiency (%) 80 82 91.5 83.76 91 86.315 
Cross Regulation(mV/mA) 0.7 N/A 2.7/2 0.7 0.2/0.11 0.097/0.066 
Load Regulation(mV/mA) N/A 0.457/0.142 0.1/2.4 1.51 N/A 4.9/6.3 
Line Regulation(mV/V) N/A  7/ 7 1.0/5.0 N/A N/A 1.4/1.34 
FOM* 11.4 N/A 6.1/4.6 6.0 18.2/33.1 447.9/658.3 

Note:  * FOM = (Max. load current × peak efficiency)/(Cross-regulation). 
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Fig. 10 Simulated load regulation and cross regulation with IA varied 

between 0.5 A and 0.4 A. 
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Fig. 11 Simulated load regulation and cross regulation with IB varied 

between 0.5 A and 0.45 A. 

 

IV. CONCLUSIONS 

 
By using the adaptive PCCM control, the cross regulation 

is improved to be 0.097 and 0.066 mV/mA, for the dual 
output, respectively. Besides, the proposed design could 
provide large driving current of 0.5A for the two output at 
the same time, such that the maximum output power of 4.15 
W is achieved.  
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