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Abstract—Deep neural networks (DNN) have been widely used
in many real-time artificial intelligent (AI) applications because
of effective hardware accelerators. However, most present designs
either suffer from high area cost or low hardware usage. This
paper presents a design of a digital logic accelerator (DLA) for
use in PBs (processing block) of an opto-electrical neural network
(OENN). The proposed DLA uses processing elements that detects
underflow and overflow. Besides, it also increased the processing
time to resolve the timing problems. The details of the design
together with post-layout simulations are presented in this paper.
The DLA is implemented using a typical 40-nm CMOS process.
It showed a performance result of 51.2 GOPS and the power
consumption is 91.3 mW at 125 MHz.

Index Terms—deep neural networks (DNN), hardware acceler-
ators, deep learning, energy-efficient accelerators, opto-electrical
integration.

I. INTRODUCTION

Deep learning has prospered in recent years owing to its

capacity to discover patterns within data and thereby pave

the way for intelligent decision making, which is superior in

certain situations to human capabilities. At the moment, neural

networks utilizing electronic systems had applications that

greatly benefited the field of sound processing, video process-

ing, communication systems, pattern analysis, etc. In the center

of these neural network applications are convolutional neural

networks (CNN) and deep neural networks (DNN) inspired

by extracting features in a small region of a specific visual

specimen to attain patterns in other regions of the specimen.

By using optimized algorithms, detection and prediction are

done with high accuracy and converges extremely fast. Neural

networks using electronic systems are using power hungry

hardware such as CPU, CPU, and FPGA.

Electronic neural networks (ENN) have been proven to

have many useful applications but still is limited by the

drawbacks of transferring electrons for signal processing and

transmission. ENNs suffered from a high time delay due to the

fact that massive weight coefficients needed to be transferred

from memory modules to processing units, and then transmits

the results back again to the memory unit. This issue results

in poor power efficiency. Moreover, as the neural network
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Fig. 1. Conceptual Opto-Electrical Neural Network (OENN) architecture.

becomes larger, this data transfer needs to be faster which

makes the devices harder to catch up and manufacture.

To improve upon the transfer rate problem, photons have

been used as the carrier of the information signals through

optical neural networks (ONN). Reck et al. presented the most

important design for chip-integrated optical neural networks in

1994 [1]. ONNs has been investigated to overcome such prob-

lems in time delays compred to ENN. Data transfers between

layers and modules can be done at the speed of light using high

speed fiber optic cables. Hence, combining the capabilities of

an electronic and optical neural networks was considered as a

feasible solution [2]. Fig. 1 is a conceptual OENN architecture,

where a distributive array of PBs (processing blocks) are

connected to an optical bus. The optical bus was governed

by a controller with a data buffer. When the video streams are

read, every frame will be transferred over the optical bus to a

designated PB to be processed.

This paper presents a design of a digital logic accelerator

(DLA) to be used in speeding up the processing speed of an

Opto-Electrical Neural Network (OENN). The design presents

a new processing element that operates faster than prior

designs. The design is implemented using a typical 40-nm

CMOS technology. Post-simulations are done to show the

performance of the DLA.

II. DESIGN OF THE DLA

A. Hardware Architecture

Referring to Fig. 2, the proposed DLA composed of a DNN

Accelerator, an Inter-controller, and a AXI Wrapper Direct
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Fig. 2. Proposed DLA in a PB.

Memory Access (DMA) is shown. The DNN Accelerator

consists of an 8×32 PE array, an intra-controller, SRAMs,

reshape modules, and line buffers.

The convolution operation can be realized by three parallel

computing methods, namely 1.) Input Channel Parallel (ICP),

2.) Output Channel Parallel (OCP), and 3.) Window Parallel

(WP). These methods provides different memory allocation

structure that aids in the power usage and performance en-

hancement.

B. Proposed Processing Element (PE)

The processing element reported in [3] is a multi-resolution

architecture as shown in Fig. 3. It can handle different weight

resolution for the operations. Although it offers an advantage

of a multi-resolution ability, the trade-off is a longer delay

because of the larger number of stages. Another penalty of

this design is when overflow or underflow happens, it just

forwards the result to the next stage hence causing errors in

calculations.

To resolve the delay and inevitable overflow & underflow

problems, a new processing element was presented as shown in

Fig. 4. Instead of a multi-resolution architecture, the proposed

PE element will only use 16-bit resolution without loss of

robustness. It is composed of four 8×8 multipliers (as shown

in Fig. 5), one 16-bit logical shifter, two 8-bit logical shifters,

three 16-bit adders, and a underflow/overflow detector. By this,

the number of shifting steps are drastically reduced because the

element no longer need to create trailing bits for the inputs of

the PE. It also has less number of stages compared to the prior

designs, thus offering better speed performance. In addition,

an underflow and an overflow detector is introduced to the

new PE to co-work with the intra-controller and send signals

to the quantization module of the DLA. Overflow is detected

Fig. 3. Prior processing element (PE) design [3].

A[15:8] A[7:0]

X

A[15:8] B[15:8]

X

A[7:0] B[15:8]

X

A[15:8] B[7:0]

X

A[7:0] B[7:0]

<<16 <<8 <<8

+ +

+

Under/
Overflow
detection

Intra-Controller

| B[15:8] B[7:0]|

A[15:8] A[15:8]B[15:8] B[15:8]A[7:0] B[7:0] A[7:0] B[7:0]

A B
16 16

Fig. 4. Proposed processing element (PE) with overflow and underflow
detector.

when the result is over 16’h7FFF and underflow when result

is 16’h8000.
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Fig. 6. PE array architecture.

C. PE Array

Fig. 6 shows the PE array architecture composed of 8 rows

of output window parallel (OWP) and 32 columns of output

channel parallel (OCP). The outputs are all passed to the left

and a set of kernel values are shared by the same column.

To reduce the area and power consumption of the array, the

excitation functions, quantization, and batch normalization of

the pixels are performed outside the array prior to the output

SRAM.

D. Input, Kernel, and Output SRAM

The input and kernel SRAM of the proposed design uses 8

banks 2-port SRAMs (1R1W)s of 8 bits width. The complete

bank is made of double buffers to shorten the access time.

Another advantage of the double buffer design is that the

resource can be allocated to other operation when not in need.

That is, when only half of the bank is used, the other half can

be allocated to load the required data. The output SRAM of

the proposed design uses 4 banks of 128 bits wide dual-port

SRAM (2R or 2W or 1R1W). The line buffer in the proposed

design uses 16-bit registers with 128-bit SRAM (1R1W)

and pushes 8 groups of 16-bit data during the convolution

operation.

E. Reshape and Line Buffer Modules

A reshape module is used for the design to support tile-

based calculations. The reshape module reorganizes the tile
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Fig. 7. Layout of the hardware accelerator.

based data to support burst transmission to make it possible

to transmit multi-tile data from one module to another. It uses

a padding methods that reorganizes the data into 1D or 2D

representation prior to transmission.

Line buffers are also used to hold the weights and data

values that will be repeated during convolution operations. It

uses a 16-bit register matching the width of the input SRAM.

F. Controller

The controller uses the Inter-Controller to control the DMA

and all the other hardware. The control signals determine the

operation of the connected modules, including the finite-sate

machine (FSM) state transfer, circuit switching, and power

consumption. The Inter-Controller has five states: 1. Idle (S0)

state, 2. Load (S1) state, 3. Calculate & Load (S2) state, 4.

Calculate (S3) state, and 5. Store (S4) state.

III. IMPLEMENTATION AND VERIFICATION

The proposed digital logic accelerator is implemented using

TSMC 40-nm CMOS technology. Fig. 7 shows the layout of

the chip. The DLA has a size of 3583×3583 μm2 including

pads. Fig. 8 shows post-layout simulations in the worst case,

namely slow-slow (SS) corner, at a frequency of 125 MHz. It

shows results consistent with the pre-layout simulations.

To verify the DLA functionality, two sets of results were

prepared: 1) from CPU-based software simulations and 2)

the DLA outcome. An algorithm based on YoloV3-tiny was

implemented with both solutions and then are compared with

each other to estimate the absolute error. The absolute error is

found within 1.4% as shown in Fig. 9. Fig. 10 shows sample

results of the DLA solution with CPU solution applied to

object recognition of underwater objects using a YoloV3-tiny-

based algorithm. We also included two scan chains and BIST

(using March algorithm) to enhance the DLA’s reliability. The

test coverage was up to 98.5%.

Table I shows the comparison with many recent NN ac-

celerator works. Notably the supply voltage of our DLA is

0.9 V operating at 125 MHz frequency. The simulation results

show a performance 51.2 GOPS at a power consumption of

91.3 mW. The proposed design shows an FOM value of 63.15

which is the best among all works. In other words, TOPS/W

= 0.561, and GOPS/mm2 = 3.99, both are the best by far if

normalized with CMOS technology nodes. It also shows the
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TABLE I
COMPARISON TABLE

[4] [5] [3] Ours
Year 2018 2020 2022 2022

Process (nm) 65 40 180 40
Verification Simu. Simu. Meas. Simu.
Supply (V) 1.2 0.9 1.8 0.9

Area (mm2) 10.6 200 53.63 12.84
Max. Freq. (MHz) 200 200 100 125
On-chip buffer (kb) 139.6 118 150 150

No. of MACs 64 128 256 256
Activation bit-width 16 16 16 16

Kernel bit-width 16 16 16 16
Performance (GOPS) 23.4 51.2 40.96 51.2

Power (mW) 93.4 153.94 196.8 91.3
Area eff. (GOPS/mm2) 2.21 0.26 0.76 3.99
Power eff. (TOPS/W) 0.253 0.3326 0.208 0.561
1CO2 equivalent (kg.) 0.35 0.58 0.75 0.34

2FOM 60.1 59.86 46.8 63.15
1Based on U.S. EPA greenhouse gas equivalency [6].
Computed based on continuous operation for 1 year.
2FOM =

Frequency(MHz)×GOPS
Normalized Power(mW)

lowest carbon dioxide (CO2) equivalent enegy emission when

used continuously for an entire year.

IV. CONCLUSION

A low-power and high performance digital logic accelerator

using 40-nm CMOS process is presented in this investigation.

A new processing element with underflow and overflow detec-

tion is proposed to increase the processing speed and reduce

computational errors. The simulated performance was found

to be 51.2 GOPS at 91.3 mW power consumption with a clock

rate of 125 MHz. The carbon dioxide equivalent shows that

our design is the most environmentally friendly in terms of

energy consumption. The FOM shows that our design is the

best so far.
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