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Abstract—This study focuses on optimizing specialized 

input/output (I/O) buffers for DDR5 SDRAMs, specifically 

examining slew rate variations due to Process, Voltage, and 

Temperature (PVT) variations. Using advanced techniques like 

Generalized Regression Neural Network (GRNN) and Genetic 

Algorithms (GA), the research models slew rate (SR) changes 

under diverse PVT variations. The dataset taken from 

simulations has been partitioned into two distinct sections, 

namely the training set and testing set, with proportions of 80% 

and 20% respectively. The simulation yields comparative 

outcomes for the real and anticipated SR. Furthermore, GA 

exhibits superior performance in forecasting slew rate when 

compared to GRNN. The regression value yields a significantly 

closer approximation to unity, thereby achieving a better fit to 

the dataset. The R2 coefficient of 0.98705 indicates a strong 

linear relationship between the provided dataset and the line of 

best fit. Surprisingly, based on the model, a temperature 

detector circuit was found redundant, resulting in substantial 

power and area savings. However, voltage variations 

significantly impacted slew rate. A voltage detector design is 

therefore recommended.  This research advances I/O buffer 

optimization, offering crucial insights into temperature, voltage, 

and slew rate dynamics. 

Keywords—I/O buffer, DDR5, GRNN, genetic algorithm, slew 

rate 

I. INTRODUCTION  

The frequency of the input/output (I/O) driver interface is 
increasing due to advancements in high-speed technologies, 
particularly in DDR5 SDRAMs. Additionally, the standards 
for the quality of output signals have been significantly 
elevated. For example, the I/O interfaces of DDR5 SDRAMs 
adhere to DDR5DB01 (DDR5 Data Buffer Specification) 
established by JEDEC [1], [2]. DDR5 SDRAMs require 
specific parameters for correct operation, including a VDDIO 
of 1.1 V, an I/O pad load capacitance (CL) ranging from 0.4 to 
0.9 pF, and the implementation of a duty cycle ratio (DR) of 
50±5%. 

When designing mixed-voltage I/O buffers, it is 
imperative to take into account the slew rate (SR) in addition 
to ensuring voltage level compatibility. The SR variation 
poses a significant challenge when it comes to the interfacing 
and communication between legacy process-based systems 
and advanced technology-based systems like FinFETs. The 

SR stability is influenced by variations in process, voltage, and 
temperature (PVT).  There have been endeavors undertaken to 
discern these process, voltage, and temperature (PVT) 
scenarios inherent in these input/output (I/O) buffers for the 
purpose of rectifying and calibrating signal integrity [3]-[8], 
albeit their capability was limited to detecting only three 
corners, namely, fast-fast (FF), slow-slow (SS), and typical-
typical (TT). Furthermore, their methodologies result in an 
extended settling time and a deteriorated SR owing to the 
absence of corner points. 

Based on the aforementioned reports and statements, no 
existing models have been developed to characterize the 
correlation between SR and process, voltage, and temperature 
(PVT) variations in an input/output (I/O) buffer. In this 
manuscript, cutting-edge methodologies such as the 
Generalized Regression Neural Network (GRNN) and 
Genetic Algorithms (GA) were employed to ascertain and 
simulate alterations in slew rate amidst a wide range of 
Process, Voltage, and Temperature (PVT) fluctuations. The 
dataset acquired from simulations has been segregated into 
two discrete sections, specifically the training set and testing 
set, with proportions of 80% and 20% correspondingly. The 
simulation produces results that can be compared between the 
actual and expected power. Moreover, the genetic algorithm 
(GA) demonstrates enhanced efficacy in predicting the rate of 
change of voltage (slew rate) in comparison to the generalized 
regression neural network (GRNN). The regression value 
exhibits a significantly reduced deviation from unity, thereby 
attaining an enhanced alignment with the dataset. The R2 
coefficient, with a value of 0.98705, signifies a robust linear 
association between the given dataset and the optimal line of 
fit. 

II. RELATED WORKS 

A. Generalized Regression Neural Network (GRNN) 

Generalized Regression Neural Network also known as 
kernel regression, is a highly efficient approach for modeling 
and forecasting [9]. Fig. 1 depicts the architectural framework 
of the GRNN, incorporating input parameters including the N 
process corner, P process corner, Voltage (V), and 
Temperature (T). The output parameter of interest in this 
context is SR. The input layer employs input variables that are 
fed into the network and are associated with the neurons 
sequentially, subsequently transitioning to the subsequent 
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layer. The hidden layer encompasses the completely 
interconnected layer with a bias, succeeded by the activation 
function. The output layer obtains the forecasting results [10]. 

The GRNN is subjected to training by utilizing a collection 
of training data, which encompasses the input parameters 
alongside their corresponding output Slew Rate. During the 
training process, it acquires knowledge regarding the 
correlation between the input parameters and the output Slew 
Rate. 

Once the GRNN has undergone the training process, it can 
be effectively utilized for the purpose of predicting the SR 
based on a novel collection of input parameters. To 
accomplish this task, it initially computes the Euclidean 
distance between the newly provided input parameters and 
every individual data point within the training dataset. It 
employs a weighted average of the output SR values from the 
training data points that exhibit the closest proximity to the 
new input parameters, to forecast the SR for said new input 
parameters. 

N Process

P Process

Temperature

Voltage

Input layer

Hidden layer

Output layer

Output

Slew Rate (SR)

Input

 
Fig. 1. GRNN architecture 

The subsequent citations exhibit a subset of the 
implementations employed by GRNN. The utilization of 
GRNN (Generalized Regression Neural Network) is 
employed for the purpose of forecasting the minimum 
miscibility pressure of crude oil [11]. It is worth noting that 
GRNN exhibited superior performance when compared to 
other pre-existing models utilized for this particular task. 
Another application of GRNNs is employed in the control of 
dynamic systems, specifically in the implementation of 
predictive controllers and estimator controllers [12]. The 
research work is conducted, wherein the implementation of 
GRNN is employed for system identification and control of 
dynamic systems [13]. This approach exhibits reduced 
training time and improved accuracy in comparison to the 
conventional backpropagation neural network. Meanwhile, 
the proposed model employs the GRNN for the seven input 
variables, specifically the IV characteristic curve, weather 
condition, and temperature parameters obtained from the 
testbed solar panel [14]. Lastly, the provided reference 
presents an empirical dataset derived from meteorological 
data, wherein solely irradiance and module temperature are 
utilized as input parameters. The power output of the 
photovoltaic (PV) panel is then assigned as the designated 
output [15]. 

B. Genetic Algorithm (GA) 

The Genetic Algorithm (GA) architecture in Fig. 2 is 
comprised of the subsequent components [16]-[18]: 

1) Population: The population can be conceptualized as 

an assemblage of potential solutions, referred to as candidate 

solutions, that aim to address the given problem. Every 

potential solution is encoded as a collection of genetic 

elements. In this scenario, every gene symbolizes one of the 

input variables: N Process, P Process, Voltage, or 

Temperature. 

2) Fitness function: The fitness function is responsible 

for assessing the performance of every potential solution. In 

this scenario, the fitness function shall assess the Slew Rate 

of the circuit based on the provided input parameters. 

3) Selection operator: The selection operator, being an 

integral part of the evolutionary algorithm, performs the 

crucial task of carefully choosing a subset of the population. 

This carefully chosen subset is then utilized to generate new 

candidate solutions, ensuring the progression of the algorithm 

towards optimal outcomes. The selection operator is 

commonly designed to introduce a bias towards candidate 

solutions that exhibit higher fitness values. 

4) Crossover: The crossover operator effectively merges 

the genetic material of two carefully chosen candidate 

solutions, resulting in the generation of a novel candidate 

solution. 

5) Mutation: The mutation operator stochastically alters 

the genetic elements of a candidate solution. 
The GA operates through a series of iterative procedures, 

encompassing the subsequent actions: 

1. Create an ensemble of potential solutions as the initial 
population. 

2. Assess the efficacy of every candidate solution from a 
fitness standpoint. 

3. Elect an assemblage of the populace to serve as the 
foundation for generating novel potential resolutions. 

4. Generate novel candidate solutions by applying the 
crossover and mutation operators. 

5. Substitute the previous populace with the updated 
populace. 

6. Iteratively execute the instructions delineated in steps 
2 through 5 until the attainment of a predetermined 
termination condition. 

The termination condition is commonly satisfied when a 
specific count of iterations has been generated or when a 
candidate solution with a suitably high fitness value has been 
discovered. The GA architecture is a robust tool for 
discovering optimal solutions to intricate problems, such as 
the task of optimizing the SR of an I/O buffer based on a given 
set of input parameters.  

For example: 

1. Suppose we intend to employ a GA for the purpose of 
identifying the most favorable combination of input 
parameters (N Process, P Process, Voltage, and 
Temperature) to achieve the maximum Slew Rate of 
the I/O buffer. 

2. Initially, it is imperative to generate an initial 
population of candidate solutions to proceed with the 
subsequent steps. Every potential solution would be 
encoded as a collection of four genetic elements, with 
each element symbolizing one of the input parameters. 

3. Next, it is imperative to assess the efficacy of every 
potential solution in terms of its fitness. To accomplish 
this task, it is imperative that we engage in the 
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simulation of the circuit utilizing the provided input 
parameters, subsequently enabling us to compute the 
SR. The fitness metric of a candidate solution shall be 
commensurate with the SR exhibited by the circuit. 

4. Subsequently, we shall employ the selection operator 
to meticulously choose a subset from the population, 
which will serve as the foundation for generating novel 
candidate solutions. The selection operator is designed 
to favor candidate solutions that exhibit higher fitness 
values. 

5. Subsequently, the crossover and mutation operators 
shall be employed to generate novel candidate 
solutions. The crossover operator shall effectively 
merge the genetic material of two carefully chosen 
candidate solutions, thereby engendering a novel 
candidate solution. The mutation operator shall 

stochastically modify the genetic elements of a 
candidate solution. 

6. We would subsequently substitute the outdated 
population with the updated population. 

7. The iterative process of steps 2-5 shall be executed 
until the specified termination condition is satisfied. 
The termination condition is commonly satisfied when 
a specific count of iterations has been generated or 
when a candidate solution with a satisfactorily high 
fitness value has been discovered. 

8. Upon achieving convergence of the genetic algorithm, 
the optimal configuration of input parameters (N 
Process, P Process, Voltage, and Temperature) would 
be determined, thereby maximizing the SR of the I/O 
buffer. 

 

 
Fig. 2. GA architecture 

III. METHODS 

The depicted framework is illustrated in Fig. 3. The 
following elucidations delineate each sequential procedure 
employed in this paper. 

Normalization 

N/P Process Corner Value: Slow (S) = -1; Typical (T) = 0; Fast (F) = 1  

Temperature: [0, 70] 
o
C

Voltage: [0.7 0.9] V

Data Acquisition 

(N Process, P Process, Voltage, 

Temperature) 

GRNN/GA

Testing and Validation

 
Fig. 3. Proposed methodology 

A. Datasets 

Fig. 4 shows the output buffer for the DDR4 SDRAM 
implemented using FinFET process. It has transistors MP1A, 
MP2, MN2, and MN1A that serves as the buffer at normal 
mode or no PVT compensation. The other transistors MP1b, 
MP1c, MN1b, and MN1c are compensating transistors that 
will be used to regulate the SR under varying PVT conditions.  
To get the slew rate values at different PVT conditions, 
MP1A, MP2, MN2, and MN1A are on while MP1b, MP1c, 
MN1b, and MN1c are off. Using HSPICE, simulations of the 
output buffer in Fig. 4 consists of N Process, P Process corner 
values, temperature, voltage, and the corresponding SR of the 
I/O buffer comprise the dataset. The dataset is partitioned into 
two distinct sections, specifically the training and testing sets, 
with proportions of 80% and 20%, correspondingly. Sample 
dataset in this manuscript is shown in Table I. 
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W(MP2)total = 154.896 µm; fin = 20

W(MN2)total = 99.12 µm; fin = 18

W(MP1a~d)total = 774.48 µm; fin = 20

W(MN1a~d)total = 495.60 µm; fin = 18

VDDIO

VSS

VPAD

MP1a

MP1b

MP1c

MP2

MN2

MN1a

MN1b

MN1c

VNW

VDD

VD

Vgp1

Vgp2

Vgp3

Vgn1

Vgn2

Vgn3

Vgp4

Vgn4

MP1d

MN1d

ULVT

 

Fig. 4. Output Buffer schematic. 

TABLE I.  SAMPLE DATASET 

Process 

N 

Process 

P 

Temperature 

(oC) 

Voltage 

(V) 

Slew Rate 

(V/ns) 

0 0 0 0.70 7.21 

0 0 0 0.72 7.61 

0 0 0 0.75 7.91 
0 0 0 0.78 8.22 

-1 -1 20 0.78 8.11 

-1 -1 20 0.79 8.42 

-1 -1 20 0.80 8.71 
-1 -1 20 0.81 9.02 

-1 1 70 0.78 10.60 

-1 1 70 0.79 11.00 

-1 1 70 0.80 11.40 
1 -1 40 0.72 10 

1 -1 40 0.75 10.40 

1 -1 60 0.70 9.49 

1 -1 60 0.72 9.88 
1 1 20 0.72 10.20 

1 1 20 0.75 10.60 

1 1 20 0.78 11.00 

1 1 20 0.79 11.40 

B. Input Parameters and Data Normalization 

1) N Process Corner (PN): This value affects the NMOS, 

MN2 and MN1a. It can be slow, fast, or typical. A slow and 

fast device translates to low and high SR, respectively. 

Hence, the designation of slow (S), fast (F), and typical (TT) 

values are -1, 1, and 0, respectively. 

2) P Process Corner (PP): This value affects the PMOS, 

MP2 and MP1a. Same as N Process Corner, it can be slow, 

fast, or typical. A slow and fast device translates to low and 

high SR, respectively. Hence, the designation of slow (S), fast 

(F), and typical (TT) values are -1, 1, and 0, respectively. 

3) Temperature (T): This value ranges from 0 to 70 

degrees Celsius.  In NMOS transistors, a rise in temperature 

generally results in an augmentation of carrier mobility, 

thereby causing a corresponding rise in the output current. 

The augmentation in electrical current frequently exhibits an 

exponential behavior, adhering to the principles dictated by 

the fundamental physics governing semiconductor devices. 

In the context of PMOS transistors, it is worth noting that 

elevated temperatures have the potential to diminish carrier 

mobility, thereby resulting in a decline in the output current. 

The decrease in current typically exhibits a linear relationship 

with respect to the rise in temperature. 

4) Voltage (V): This is the supply or I/O voltage of the 

output buffer in FinFET process which ranges from 0.7 to 0.9 

V. As the voltage increases, the output current for both 

NMOS and PMOS generally exhibits exponential increase. 

Nevertheless, the voltage output frequently exhibits a linear 

growth pattern. In relation to SR voltage variations have the 

potential to exert an influence. In specific scenarios, an 

augmentation in voltage could potentially induce a swifter SR 

in signal, especially if it engenders a proportional increase in 

the output current.   

C. GRNN Implementation 

The implementation and algorithm of the GRNN is 
already discussed [14]. The dataset should be appropriately 
structured, incorporating the following columns: N Process, P 
Process, Voltage, Temperature, and Slew Rate. The 
aforementioned dataset shall be employed for the purposes of 
training and evaluating the GRNN. Partition the data into 
distinct subsets for training and testing purposes. In this 
scenario, it is advisable to allocate 80% of the data for training 
purposes, while reserving the remaining 20% for testing. 
Utilize the training data to train the GRNN. Perform the 
evaluation of the trained GRNN by utilizing the designated 
testing dataset. 

D. GA Implementation 

The prediction of the slew rate (S) based on input 
parameters such as N Process, P Process, Voltage, and 
Temperature using genetic programming in MATLAB 
involves a systematic approach. Firstly, the problem is clearly 
defined: an equation needs to be found that accurately predicts 
the slew rate using the specified inputs. A comprehensive 
dataset containing values for N Process, P Process, Voltage, 
Temperature, and their corresponding slew rates is gathered; 
this dataset serves as the foundation for training and validating 
the genetic programming model. 

Using MATLAB as shown in Fig. 5, a fitness function is 
created to quantify the goodness of fit for candidate equations. 
Then, the terminal set (variables like N Process, P Process, 
Voltage, and Temperature) and the function set (mathematical 
operations like addition, subtraction, multiplication, division) 
that the genetic programming algorithm can employ to 
generate candidate equations are defined. 

The GA algorithm parameters, including the population 
size, number of generations, and crossover/mutation 
operators, are configured. The algorithm is run on the dataset, 
allowing it to evolve equations over multiple generations, 
optimizing the fitness function in the process. 

The best-evolved equation is evaluated using a validation 
dataset to ensure its accuracy and reliability. The evolved 
equation is interpreted to comprehend the relationship 
between the input parameters and the slew rate. Subsequently, 
the evolved equation is tested with new data points to validate 
its performance. Continuous improvement is emphasized: if 
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more data becomes available or enhancements are needed, the 
algorithm is rerun with the updated dataset, or the terminal and 
function sets are adjusted for better accuracy and predictive 
power. 

function slew_rate_equation = genetic_programming(N_process, P_process, voltage, temperature, 

slew_rate, stopping_criterion) 

 

% Initialize the population of random mathematical expressions 

population = generate_random_population(input_parameters); 

 

% Evaluate the fitness of each expression 

fitness_values = evaluate_fitness(population, training_data); 

 

% Select the best-performing expressions 

best_expressions = select_best_expressions(population, fitness_values); 

 

% Mutate and crossover the expressions 

new_population = mutate_and_crossover(best_expressions); 

 

% Repeat steps 2-4 until a satisfactory solution is found 

while not stopping_criterion_met(fitness_values, stopping_criterion): 

    population = new_population; 

    fitness_values = evaluate_fitness(population, training_data); 

    best_expressions = select_best_expressions(population, fitness_values); 

    new_population = mutate_and_crossover(best_expressions); 

 

% Return the best expression 

slew_rate_equation = best_expressions(1); 

 

end 

 

% Function to generate a random population of mathematical expressions 

function population = generate_random_population(input_parameters) 

 

% Number of expressions in the population 

population_size = 100; 

 

% Initialize the population 

population = cell(population_size, 1); 

 

% Generate a random mathematical expression for each individual in the population 

for i = 1:population_size 

 

    % Generate a random expression tree 

    expression_tree = generate_random_expression_tree(input_parameters); 

 

    % Convert the expression tree to a mathematical expression 

    expression = expression_to_string(expression_tree);  

Fig. 5. GAalgorithm. 

E. Testing 

There is an 80%:20% split between the training set and the 
test set. At first, we used the training model to simulate the 
testing datasets. The following additional steps were taken as 
well: Percentage errors were calculated by comparing the 
model's predictions to the observed data. To verify the 
accuracy of the model's projections, new data were collected. 
Validation of findings via comparison to simulated data, 
Finally, a simulated GRNN version of the dataset was 
compared to the GA version. 

IV. RESULTS AND DISCUSSION 

Eqn. (1) shows the SR function in terms of PP, PN, V, and 
T generated using GRNN. However, the percent error of this 
generated equation is about ±20% which is higher as shown in 
Fig. 6. Hence, a GRNN model is not suitable for the SR model. 

�� � 0.7753 
�  �  0.7751 
�  –  0.0086� �
13.4423� �  0.0243                                         (1) 

Eqn. (2) shows the SR function generated using GA. As 
shown in Fig. 7, its resulting R2 is 0.98705 and RMSE is 
0.21455, making the GA model suitable for the SR output 
parameter. 

�� � 0.758
�  �  0.758
�  –  0.00758� �
 13.9� �  4.23 tanh��� �   2.07
�

� �� �
 0.944
�

� –  0.944 
�
�� –  5.04                          (2) 

 

Fig. 6. SR vs. percent error plot. Notice that the percent error ranges from 
about ±20% 

 

Fig. 7. SR’s predicted vs. actual values using GA. 

As seen in both Eqn. (1) and (2), the temperature 
coefficient (0.0086 and 0.00758) is quite low compared to the 
other three parameters. This indicates that the temperature 
does not affect the SR greatly. Moreover, it is noted that the 
voltage coefficient (13.4423 and 13.9) is the highest which 
means that it greatly affects the SR. Significantly, the GA-
generated SR model emphasizes the influence of both N and 
P process variations on the SR. Furthermore, the GA-
generated SR model introduces multi-variable terms that were 
not initially present in the SR model created by the GRNN. 
This suggests that the GA has the capacity to identify and 
incorporate additional factors or variables that contribute to 
the overall understanding of the system response, enhancing 
the model's comprehensiveness and predictive capabilities. 
The use of GA in generating the SR model not only highlights 
the impact of process variations but also introduces new, 
previously unidentified multi-variable terms, enriching the 
overall predictive power of the model.  

V. CONCLUSION 

A model for the slew rate (SR) for the DDR5 SDRAM is 
successfully modeled thanks to GA. The indication of the low 
temperature coefficient and a high voltage coefficient as seen 
from the generated equation for SR recommends to carefully 
design a good voltage sensor/detector for SR regulation and 
compensation at different PVT variations. It is also good to 
note that a temperature sensor/detector is not needed which 
makes the I/O buffer save more power and area. 
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