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ABSTRACT

A method of belief combination based on a heuristic potential
model is proposed, in which a belief function associated with a piece
of evidence is modeled as a belief density function and each point
belief thereon generates a potential on the hypothesis. The procedure
of belief combination is a spatial interpretation in which the
influence of a piece of evidence on a hypothesis is based on the
distance between the evidence and the hypothesis and the strength
of the evidence. The resulted belief combination at the hypothesis is
a cumulative integral of the potential generated by all point beliefs
on the evidence. This model can handle both of discrete belief
functions and continuous belief functions. Also it has resolved the
conflicts resulting from either the mutual dependency relationship
among different pieces of evidence or the structural dependency in an
inference network due to various combination orders of evidence. A
belief combination procedure for arbitrary number of evidence
without any conflict is presented. Some examples are given to
demonstrate the advantages of this method over the conventional
approaches.

LI—EsetE BMEMERS
pRaue’ T
BAGIEER @ HETE - ARSTRRL - FEASAEA - AHECARKK o

m B

A — B PR EHRE A BB - ZEE SRR AR (SR O DL —
{EEE R rRloRa . M H IR R — (R R TR e Wam Lt —
{BHE o METTHMEH S A — B L R « — (B ik hSaRnYy
RPEI PSS M P RRE SRS R T AR AORSH SRS BT
PEAEZ (RERRSREZR - S8 (B i s D (FRR O 7T SEE - TRk
T S (T ER R AR R T R B e — B HE B A PN AR A AT
R IPIE o ASCR T—E DA SRS R - M H SOP e R
FUF o SR B AR 58 BRI A (e ik < R -

1. INTRODUTION

Belief combination is one task of evidential
reasoning which is referring to combination of
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relevant evidence for or against hypotheses, and is
the core of many rule-based systems that will help
people to do decision making, and diagnosis. The
problem of belief combination due to many pieces
of information or evidence conveying uncertainty,
i.e., the evidence is sort of imprecise, incomplete,
or vague, is worth focusing effect upon. The way to
assess the hypothesis is to infer its it belief value
from the belief values of the evidence. The belief
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value can be taken from a certain belief region,
e.g., a unit interval [0,1], which can be discrete or
continuous, or from a set of linguistic quantifiers,
e.g., [very unlikely, unlikely, likely, very likely], etc.
The fact that the belief strength of a piece of
evidence is not subject to any change of another
evidence is a basic definition of independency of
the evidence. On the other hand, if the belief
strength of one evidence is subject to other
evidence, it is deemed that there is a mutual
dependency relationship among these evidence,
which can be totally dependent or partially
dependent. If a hypothesis is supported by many
pieces of evidence, then the combined belief
strength of the hypothesis is the belief value
caused not only by the individual evidence but
also by the mutual dependencies between the
evidence.

There are three major frameworks of
evidential reasoning in the literature, i.e., the
Dempster-Shafer theory of evidence, the fuzzy set
theory, and the Bayesian probability theory [1],
[2], [3]. The Bayesian model probably is the most
popular among the three, which is built on a solid
conventional base of probability theory and
statistical decision theory. The fuzzy set theory
focuses on the issue of representing and managing
vague information. Fuzzy logic, in contrast to the
conventional possibilistic logic, is used in a variety
of approaches which propose a logical treatment of
imprecise knowledge referring explicitly to fuzzy
set theory. The belief function approach provides a
complementary strategy to the Bayesian model. In
this approach, the precise specification of a
complete probabilistic model is not required, and
the conditionalization to represent the impact of a
piece of any new evidence is not used any more. In
Dempster's formulation, belief functions are
interpreted as lower and upper probabilities
induced by a family of probability distributions
[4]. Shafer then interpreted the Dempster's theory
as a model of evidential reasoning [5], [6], [7], [8].
The advantages and weaknesses of these three
frameworks have been discussed in [9], [10], [11],
[12], and [13].

The application of Shafer's belief function to
manage uncertainty of information in a rule-based

system has attracted much attention in artificial
intelligence research. The Shafer's belief function
model uses numerical value in the interval {0, 1)
to represent the degree of incompleteness of
information. The nonrobustness of this model has
been discussed in [14], [15). Besides this
drawback, the basic probability assignment (BPA)
of a belief function is in the form of discrete type
function which can not always provide a precise
description of a piece of evidence for all situations.
In many cases, it is not appropriate to assign a
discrete probability over [0,1] by thresholding the
interval into several regions, since the thresholds
themselves can not describe the inexact nature of
a piece of evidence. The possible quantization
problem caused by thresholding a continuous
region. for the weight of evidence has been
discussed in [9]. The continuous form of belief
function, which is a more general representation,
is more appropriate for the expression of the
vagueness of a piece of evidence in many
situations. One example which can not be nicely
handled by Shafer's model, or fuzzy sets theory
will be given in Section 2.1. Previous belief
function approaches also include [16] and [17],
which have focused on handling the belief
combination problem by using Dempster-Shafer's
rule. They didn't provide a formal proof of their
method. Other previous related work includes
Shafer and Logan's algorithm for hierarchically
structured hypotheses [6], and an improved
algorithm from the previous one by Shafer and
Shenoy [8]. With regard to the dependency
relationship between many pieces of evidence,
Hau proposed a coefficient between the maximally
dependent and independent cases to indicate the
degree of dependency [14]. However, the bilateral
mutual dependency relationship has not been
discussed. Someren presented a learning scheme
by using the dependencies among attributes of
objects [18]. In a rule-based intelligent system,
evidential reasoning often leads to inconsistent
results due to the mutual dependency among
many pieces of evidence and the structural
dependency caused by the improper arrangement
of an inference network. Qne example to illustrate
the inconsistency will be given in Example 2 of
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Section 4. Such dependency relationship in an
inference network has never been seriously
addressed in the literature.

The rest of this paper is organized as
follows. In Section 2, we present the theory of the
proposed belief combination model, and a
generalized procedure of belief combination based
on the theory. Section 3 gives several examples to
demonstrate the advantages of the proposed
model. A conclusion is given in Section 4.

2. THEORY OF POTENTIAL MODEL
2.1 Representation of Evidence

The first step in the simulation of human
reasoning with uncertainty is to find a proper way
to represent the uncertainty and then build up the
inference procedure. In the belief function
introduced by Shafer [2] and Hau [14], two
parameters, i.e., a lower bound and an upper
bound, are employed to indicate the credibility
and the plausibility. For the sake of clarity, the
belief function is borrowed to represent the belief
density function associated with an evidence in
the following text, and the belief function proposed
by Shafer, [2], [6], [8] is named as Shafer’s belief
function. But, as discussed earlier, the
probability assignment strategy for Shafer's belief
function has its inherent drawback. For example,
if a piece of evidence is to emphasize that the
closer it is to the truth, the stronger it is, then
that evidence can be conveniently modeled by a
linear continuous function, which is a density

function,
Bel(6)=F- 0, (1)

where @is in the interval [0,1] indicating the
authenticity of the evidence, and % is a constant.
We can hardly find any significant thresholds to
guantize the associated belief function into a
discrete form which can be handled by either
Dempster-Shafer theory [2] or Hau's modified
Demspter's rule [14]. Therefore, a more general
representation of evidence is needed to represent
such kind of uncertainty. In the following, we
present our representation of a piece of evidence.

Definition 1: A piece of evidence in a rule-based
system is represented by a subset A of the frame

of discernment @, and a belief function associated -

with A is represented by a belief density function

p4(8), where @1is a variable indicating the degree

A denotes the
complement of A. 1 is used to denote the truth of
the evidence and 0 is used to denote the falsity of
the evidence. 8is a numerical value in the interval
[0,1]. The total amount of belief in the interval
[0,1] is

of truth for the evidence.

[opa(6)d6=1 @)
this
representation is called belief density function

In order to avoid any confusion,
which is a function to describe the distribution of
a fixed amount of belief, say 1, in an interval
[0,1]. This type of belief density function can be
transformed into a Shafer's belief function by
For
instance, if the above linear continuous. belief

assigning two bounds to the interval.

function in Eq. (1) is going to be transformed into
the conventional belief function by choosing two
thresholds in the belief region [0,1] and compute
the respective area of each subregion so that the
numerical values of the credibility and the.
plausibility of this belief function are obtained. If
two thresholds, say 1/3 and 2/3, are chosen and %
is 2 derived from Eq. (2), the following results are

obtained,
1 5
Cr ..jzfgzede =3
1 8
Pl _Lfszeda =3

On the other hand, given a Shafer's belief function
by BPA method, e.g., a Shafer's belief function
with credibility 5/9 and plausibility 8/9, it can not
precisely express the characteristics of the linear
continuous belief density function shown by Eq.
(1).

The belief density function, p,(8), can also
be imagined as a "mass" density function, in
which each p,(8) is treated as a point belief
located at 6. Each point belief on the evidence will
generate a potential at a distant location on the
hypothesis. The resulted value of the belief
function at a certain location on the hypothesis
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will be the cumulative integral of all the potential
generated by all point beliefs on the evidence.

2.2 Spatial interpretation of one evidence's impact

Before we proceed the discussion of belief
combination of multiple evidence, the effect of a
single evidence onto the hypothesis should be
analyzed. Assume a belief function of evidence 4
is represented by a belief density function, g4(6),
on an interval, e.g. [A,A]l, on a plane. A
hypothesis C supported by the evidence A is
represented by a belief density function, gg(8), on
an interval [C,C], and is located parallelly to the
line segment [A,A] at a distance. Line segments
[A,A] and [C,C) has the same length, called
belief length, usually a unit length. The spatial
relationship between the evidence A and the
hypothesis C is shown in Fig. 1. The effect of any
single point belief of evidence A onto a point on
the hypothesis C is determined by two
parameters, i.e., the distance between these two
points, and the belief strength of the point belief
on the evidence A. We can assume that the effect
from a point of the evidence A on a point of
hypothesis C is proportional to its belief
magnitude g4(6) of the point of a piece of
evidence, and is inversely proportional to the
distance r,c between these two points. To the
hypothesis C in Fig. 1, the potential V(9)at every
point 8 thereon is affected, respectively, by each

point belief g,(¢) on the evidence. This
relationship can be described as
V(o) ) 1 @

‘Tac

where ryc=+/(t- 002+ Ryo?, R, is the vertical

distance between line segments, [A,A] and
[C,C], and % is a constant. Hence, the overall
contribution of the evidence, A, to a specific degree
of belief @ of the hypothesis C can be formulated
as following,

TAC

A (t)
Vol8) = da_ dt. (@)
¢ J} Byt —0) + By0?

The physical meaning expressed in the last
equation is that the "mass" of every point of the
evidence will project its effect, which is called
potential, on every individual point of the
hypothesis. As a result, the total effect on a point
of the hypothesis is the cumulative sum of the

. .potential from every point of the evidence. The

influence of the evidence on the hypothesis can be
interpreted by the function of spatial distance and
belief strength. Hence, it iS necessary to define
the relationship of the dependency and the spatial
distance more clearly.

Fig. 1. The relationship between a piece of
evidence A and the hypothesis C.

Definition 2: The distance from a piece of evidence
to the hypothesis is called its absolute
dependency, which represents how important
this evidence is with respect to the hypothesis.
For example, R, in Fig. 1 is the absolute
dependency of A to C. Two special cases are
discussed in the following. We can learn the
physical meaning of the dependency in the spatial
interpretation from these special cases.

Case It Ryp — oo

This special case implies;that the evidence
“mass" 1s placed at.an infinite.distance from the
hypothesis, which-contributes zero potential to the
hypothesis. - According to Egs. (3) and (4),

s

imV=1m-2-=0 (5)

- rees roe R-r

Tl;is is an expected result. Its'_physical meaning
is that the evidence has nothing to do with the
hypothesis, i.e., they are totally independent.

Case2: Ryp -0

In this case, intuitively the physical
meaning is that the evidence projects itself onto
the hypothesis. This can be shown as follows.
Referring to Fig. 1, the ratio of the potentials
generated by two mass points, g4(f) and g,(6),

where ¢+ 6 onto the position 6on C is
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g4(6)
— o2 2
im AAC lim \/(t O) + Bac
Rue—0Vy(0) Rac—0 ga@®)
Ryc
q.(8) Ryc -0

= Ryc—0 qA(t) '\/(3—9)2 +RA62

This shows that the potential V(8) is totally

determined by the point belief at the position 6 of
evidence A. Also if there are other evidence with
nonzero values of absolute dependencies, their
effects on the hypothesis comparatively can be
ignored. Hence, the hypothesis is totally
dependent upon the evidence A.
Definition 3: The ratio of the absolute
dependencies of two beliefs is called their
relative dependency ratio, which represents
the relative importance of the two pieces of
evidence with respect to the hypothesis.

For example, the relative dependency ratio
of the two pieces of evidence E; and E, in Fig. 2

can be expressed as

R
P = ®

Let E; be another evidence, then it is easy to

show that the following is also true.
Lemma I: Relative dependency is transitive, i.e.,

P12 = P13 P32 N

_______

Fig. 2. The relationship between n pieces of
evidence, E; i=1,---n, and the hypothesis
H.

2.3 Multiple pieces of evidence

We now consider the belief combination
which refers to the belief conjunction of several
pieces of evidence supporting the same
hypothesis.

Definition 4: Belief combination refers to the
deduction of the belief associated with
(A=C)n(B—=C)) from the belief associated
with two pieces of evidence A and B, respectively,

where C is the hypothesis supported by A and B.
That is, given two frames of discernment ©, and

O, a compatibility relation between ©, and Op
is the Cartesian product of them, which is
represented as

@AX@B%@C (8)

Consider an example shown in Fig. 3, which

has two pieces of evidence A and B. Suppose the
relative dependency ratio p,p is given. We can

set the value of the absolute dependency R,o
based on the desired effect of A onto C. Then the
total potential distribution of hypothesis C is

given by
Veoy=[\— 20 g
Ak A(t- 0+ Rye?
B [*4:] ()
+E dt 9

koot - 0)? + Rpc?

where Rp =pg4 -Byc.. Since V(8)only shows a

relative degree of the cumulative potential
strength of each point on the hypothesis C, it has
to be normalized to become a belief density
function. The resulted belief density function can
then be used in the next stage of belief
combination process in an inference network.
Another factor to be taken into consideration
is the length of a belief on which a belief density
function is distributed. If the length of the line
segment on which the belief density function is
distributed compared to an absolute dependency
is pretty long, then the influence of one end of the
evidence will be pretty small to the other end of
the hypothesis, e.g., the A to C in Fig. 1. Hence
the ratio of the length of line segments to a
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selected absolute dependency will be a factor to
the final result of the belief combination.

A a,(8) A
’ S \
Tac Rac
c c *
V,(6)
R
ch BC
B B Y
q,(6)

Fig. 3. The relationship between two pieces of
evidence A, B and hypothesis C.

Referring to Fig. 3, if a ratio of the length of

the belief A, i.e., from A to A, to its absolute
dependency R, is comparatively large, then the
potential generated from one end of the evidence A
on the other end of the hypothesis C will be small.
Apparently, the final potential distribution on C
will depend on this length.
Definition 5: The ratio of the length of the interval,
where a belief function is distributed on, with
respect to the absolute dependency of the belief
density function is called belief length ratio
(BLR).

For instance, if the BLR = 20, then the
length of line segment is 20, and the selected
absolute dependency is 1. After the belief
combination calculation is done, the belief length
is normalized to a unit length. However, this
brings up an argument about what a good belief
length ratio is in order that a good evidence
combination result can be obtained. We have
performed some simulations in order to find a
reasonably good range of this ratio, which will be
presented in Section 3. The following result can
be easily proved.

Lemma 2: If the belief length ratio approaches
infinite, the potential value of each point on the
hypothesis will converge to a constant.

Proof: The potential value of the hypothesis at @is
given by

Ve(6)=lim [ ga(®) dt
Lo=L g 3[(t-0)% + Ry
Let
W(t) - QA(t) < 1

Boy(t-02 +Rye®  k-A(t—0)2 + R0
C

When t—>m,W(t><k—1t as long as R, #0. By

elementary calculus, the V(6) will converge.

In short, this model has some advantages
over the previous models:

(1). It can be extended to the combination of many
pieces of evidence. In Fig. 2, a model of the
combination of n belief density functions is
shown. In this case, the resulted value of the

belief density function of the hypothesis
V4 (8) is given as

VH(9)=ZVIL.(9), (10)

i=1

where Vy (6) is the potential generated by

evidence E;,i=1---,n.

(2). It provides two parameters for the evidence
combination, which allow the mutual
dependencies among the evidences and the
hypothesis to be easily coped with.

(8). It can handle both the conventional discrete
probability assignment and the continuous
probability assignment of a belief function.

(4). The physical meaning of dependency, belief
strength, and influence of a piece of evidence
to a hypothesis can be fully demonstrated in a
spatial interpretation.

2.4 A Generalized Procedure for Belief
Combination

Based on the above potential model, we
propose in the following a procedure for computing
the combination of n pieces of evidence. This
method can avoid the dependency conflict problem
in an inference network. Assume there are n
pieces of evidence to be combined, which are
expressed as following,
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sup

q’:(g)L'nf’ i:‘l)"':n’

where g;(@) represents a belief density function

distributed on the interval [inf, sup]l, and inf
represents the complement of sup. The relative

dependency ratio between the ith and jth beliefs
is denoted by p;;.

Procedure of combination of multiple
evidence

(1) Choose one of the n beliefs as a basic belief,
say j, which is supposed to be the strongest
evidence supporting the desired hypothesis,
i.e., the evidence with the shortest distance to

the hypothesis; Set R; ;,,, to a desired value.

(2) Compute the potential on the hypothesis by

noesu q;(6)
Vigpo 0= 2 [ ‘ dt
hyp E"L"f k'\/(t-e)z“‘(PﬁRj.hypo)z

(11)

where R, is the absolute dependency of

J hypo
q,(8) to the hypothesis, and (sup - inf) = belief
length .

(3) Normalize V ,,,(0)to a belief density function
form.

Note that a rule of thumb of selecting the
basic belief is to choose the evidence having the
strongest absolute dependency with respect to the
hypothesis.

3. Examples of Simulation

In this section, the feasibility and
advantages of the proposed potential model are
demonstrated by several examples.

Example 1.

This example shows the capability of the
proposed model to handle the belief combination
of discrete type belief density functions. Suppose
the uncertainty of a belief density function is
distributed on the [0,1] interval, where 0 denotes
the complete false, and 1 the complete true.
Assume two pieces of evidence, A and B, have the
relative dependency ppy = 0.6 » which implies the
evidence A is the stronger of the two pieces of
evidence with respect to the hypothesis C. Let

p4(0)=0.86(0-0.0)+0.45(6-0.5)+0.36(8-1.0)

pp(8)=0.26(0-0.0)+0.46(6-0.5)+0.46(6—-10),

which are illustrated in Fig. 4. Following the
procedure given in the previous section, the
absolute dependency R, is chosen as a unit, i.e.
R,c =1. Hence, the absolute dependency Rp. is

determined by Eq.(6),

10
Ry =——=1.666
BC ™ 0.6
0.4
0.3 0.3
! r b
0. 5
Rac
. C
0.4 0.4 Rac
0.2 T T
; | & Y
0 5 1

Fig. 4. An example to demonstrate the proposed
belief combination model.

The belief density function of hypothesis C is
then computed by applying the procedure of
Section 2.2. The resulted credibility and
plausibility of belief function pg(68)of the
hypothesis C are tabulated in Table 1, where the
©. represents the unknown portion of belief of
the hypothesis C, Cr, the credibility, and Pl;the
plausibility.

Here, we have employed two conventional
notations which are the Cr, credibility, referring to
the lower bound of the belief function defined in
(2] and [14], and the PI, plausibility, referring to
the upper bound, for the sake of comparison.
From Table 1, we can see that when the BLR
approaches infinite, the belief density function of
hypothesis C will converge to a stable value,
which is predicted by Lemma 2. We can also see
that if the BLR is small, which indicates that the
two ends of belief function are close to each other,
then the mutual interaction of point beliefs is
strong, and vice versa. From the simulation

19



20 Journal of Engineering, National Chung Hsing University. Vol.6 No.1, (1995)

result, a reasonable choice of a belief length ratio
seems to be about 20 to 100.

BLR Cre Q¢ 1-Pl¢
1 0.328649 | 0.346598 | 0.324753
2 0.325444 | 0.360448 | 0.314108
5 0.325997 | 0.377129 | 0.296874
10 0.329302 | 0.385782 | 0.254916
20 0.332534 | 0.391732 | 0.275735
50 0.335258 | 0.396312 | 0.268430

100 | 0.336332 | 0.398081 | 0.265537
200 | 0.336903 | 0.399021 | 0.264076
500 | 0.337258 | 0.399603 | 0.263138
1000 | 0.337379 | 0.399801 | 0.262821

Table 1: The results of proposed model applied to
Fig. 4.

Example 2.

In [14], one very crucial problem was
pointed out, which is that in a sequential
programming rule-based system, the structural
dependency problem can hardly be avoided.
Referring to Fig. 5, suppose there are three pieces
of uncertain evidence to be combined. In a
sequential programming style, two of them have
to be combined first, then the result of this
combination will be combined with the third one.
Two possible structures of combination are shown
in Fig. 6. If all of these three pieces of evidence
are totally independent with each other, there will
be no conflict in the final result for the two
structures in Fig. 6. But if these three pieces of
evidence are partially dependent upon one
another, then conflict will happen. The final
results obtained from the two different structures
will be inconsistent with each other.

Fig. 5. Combination of three pieces of evidence B,
C, and D to support the hypothesis A.

Case 1:

Case 2:

Fig. 6. Two different structures of combination of
the three pieces of evidence B, C, and D.

Consider the case in Fig. 5 and the two
different structures of combination shown in Fig.
6. Assume

Cr(B)=0.98, PL(B)=0.99, pep=ppc = 0.5,
Cr(C)=0.0L, PI(C)=0.02, pgz=0.1
Cr(D)=0.0L, PI(D)=0.99, ppp=0.9

Based on Hau's approach [14], the results
listed in Table 2 will be obtained. There are some
obvious inconsistencies in the results of Table 2.
From the assumption, evidence B is the strongest
one to support the hypothesis A, the other two
pieces of evidence C and D are less important
than B. According to Table 2, the resulted
credibility of case 1 is more than twice of that of
case 2. On the contrary, the plausibility,
(Cr, +©4) of case 11is only half of that of case 2.
These results indicate that Hau's method is easily
subject to the combination order of the evidence,
which is not consistent with the intuition of
human reasoning. According to intuition, if these
three pieces of evidence are given, a belief function
associated with A should be dominated by B,
since the relative dependency ratios of C and D
indicate their less influence on A, and because D
has a stronger dependency to B than C, B should
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have the dominant impact on A. However, the
result in Table 2 does not show that B has the
dominant influence on A. Therefore, we conclude
that the results given by Hau's method are not
consistent with the human reasoning. The reason
why the conflict appears in this example is that
the mutual dependency relationship will
propagate through the inference network. Qur
model, on the other hand, can resolve this
problem and provide a much more reasonable
As a
comparison, we use our model to compute the

result than the conventional approaches.

belief function of hypothesis A and the results are
listed in Table 3,

Cra O, 1 - Pl
Case 1 | 0.006903 | 0.012857 | 0.930239
Case 2 | 0.003064 | 0.033357 | 0.963579

Table 2: The results of Hau's approach applied

to either case of Fig. 6.

BLR C?‘A 0,. 1- PIA
1 0.352041 | 0.348043 | 0.299916
2 0.375143 | 0.363695 | 0.261162
5 0.414667 | 0.391576 | 0.193757
10 0.441216 | 0.414554 | 0.144230
20 0.460307 | 0.431718 | 0.107975
50 0.477805 | 0.441651 | 0.080544
100 | 0.485792 | 0.444197 | 0.070011
200 | 0.490254 | 0.445354 | 0.064391
500 | 0.493070 | 0.446039 | 0.060891
1000 | 0.494030 | 0.446269 | 0.059702

Table 3: The results of proposed model applied to
case of Fig. 5.

Based on Table 2 and Table 3, a
comparison is given as follows. Evidence B is the
strongest one to support the hypothesis A, the
other two pieces of evidence C and D are less
important than B. Hence, a belief function
associated with A should be dominated by B,
since the relative dependency ratios of C and D
indicating their less influence to A. Also the result
should be consistent, despite the arrangement of
the inference network. Referring to Table 3, no
matter what the belief length is, the credibility

Cr, and plausibility (Cr, +©,4) of hypothesis A
are strongly influenced by B, and only slightly
perturbed by C and D. This is close to what we
expect from the intuition.

Example. 3

This example is going to illustrate the
capahility of the propased model to handle the
uncertainty aggregation of continuous belief
functions. Suppose there are two pieces of
evidence A and B which both support a hypothesis

C. We are given the following information,

pA(9)= 20, 6¢[0,1]

L0, oses%
1 2
8)=<0.25, =<8<=
pp(@) g 3
175, —<6<1
3
ppa =0.5

where p,(08) and pp(@) are the belief density

functions associated with two pieces of evidence A
and B, respectively. The graphs of the above
belief functions are shown in Fig. 7. From the
given information and Fig. 7, we are expecting a
reasonable result of the belief combination of
these two pieces of evidence which should be
dominated by the stronger evidence A and
perturbed by the weaker evidence B. By applying
the procedure given in Section 2.4, we obtain the
results which are a family of belief functions of the
hypothesis C for different belief length. If two
thresholds, which are 0.8333 and 0.667, in the
interval [0,1] are selected to quantize the belief
funetion into the conventional form with a
credibility and a plausibility, then we have the
results listed in Table 4.

From Fig. 7 and Table 4, it is obvious that
no matter what the belief length ratio is chosen,
the belief density function of the hypothesis C is
dominated by the stronger evidence A, and
perturbed by the weaker evidence B. When the
belief length is small, the point beliefs close to one
end of the belief density function of the evidence
have great influence on the points of the other end
of the hypothesis; and vice versa. Therefore, when
the belief length ratio is getting larger, the impact
by the weaker evidence will gradually appear. The
results shown in Fig. 7 meet what we anticipate.
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2.0

p(0)

2

Fig. 7. Sirnulation results of Example 3.

BLR Cr Pl

5 0.395806 | 0.765112
20 0.447528 | 0.793486
100 0.491115 | 0.800420
500 0.514544 | 0.801611
10000 | 0.535527 | 0.802300

Table 4: The results of proposed model applied to
Example 3.

4, Conclusion

A new approach to handle uncertainty
aggregation of belief combination in rule-based
systems is presented in this paper. Reasoning
with uncertainty in a rule-based system is
considered as the aggregation of uncertain
information about the belief from different
sources. Belief combination is one type of
aggregation of uncertain information, and is a
critical operation of information fusion. If

Dempster's rule [2], [6] or Hau's approach [14] is

adopted, the conflict resulting from the structural
dependency of a lattice-structured inference
network can not be resolved. Our proposed
approach, on the other hand, provides a
remedification to this conflict resolution problem.
QOur method offers several advantages over
previous methods. First, the conflict due to the
mutual dependency relationship among different
pieces of evidence in an inference network is
solved. Second, not only the discrete belief
functions, but also the arbitrary continuous belief
density functions can be handled, which has not
been explored up to date. The merit of a
continuous belief density function is that it can
better represent the vagueness of a human
concept than a conventional discrete one. Third,
given different belief length ratios, different
potentials of the goal will be obtained, which
provides a variety of options. The proposed model
also provides an interpretation for belief
combination by a spatial view of evidence and
hypothesis. Fourth, the complexity of
computation in Dempster's belief function
approach or Hau's approach in a inference
network is significantly reduced because the
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proposed model avoids the inherent structural

dependency problem. The simulation results of

the proposed model also turn out to be more

appealing.
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