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Abstract:  The exponential bidirectional
associative memory (eBAM) is a high-capacity
associative memory. However, in the hardware
realisation of eBAM, increasing efforts have been
made to obtain an optimally small radix of
exponential circuit for the fixed dynamic range of
the VLSI circuit transistor, thereby allowing the
dimension of the stored patterns to reach
maximum. In this paper, the authors prove the
stability of eBAM. The absolute lower bound of
the radix of the eBAM is also obtained. In
addition, an algorithm is presented to compute
the optimal radix of an exponential circuit. To
preserve the optimality of the radix, an algorithm
capable of updating the radix when new pattern
pairs are to be installed is proposed. Moreover, a
deterministic method is presented to train and
install pattern pairs with a predetermined fault
tolerance ability.

1 Introduction

After Kosko [1, 2] proposed the bidirectional associa-
tive memory (BAM), many investigators attempted to
enhance its intrinsic poor capacity and implement the
BAM with hardware circuits. Among those efforts,
Wang et al. [3] presented two alternatives, multiple
training and dummy augmentation, to enhance BAM’s
ability to find the global minimum. Simpson proposed
an intraconnected BAM and a high-order autocorrela-
tor [4], and Tai et al. [5] presented a high-order BAM.
In addition, Wang et al. [6] developed a weighted learn-
ing algorithm for BAM. Our previous work [7] pointed
out that, despite the merits of the above efforts, they
increase the complexity of the network and only
slightly enhance the capacity. Chiueh and Goodman (8]
presented an exponential Hopfield associative memory
motivated by the MOS transistor’s exponential drain
current dependence on the gate voltage in the sub-
threshold region, such that the VLSI implementation of
an exponential function is feasible. In that same work,
Chiueh also proposed an exponential correlation asso-
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ciative memory (ECAM), which is an autocorrelator
utilising the above-mentioned exponential function of
VLSI circuits to enlarge the correlation between stored
pattern pairs. According to Chiueh’s exponential Hop-
field associative memory, Jeng et al. proposed one kind
of exponential BAM [9]. However, the energy function
proposed in [9] cannot guarantee that every stored pat-
tern pair will have a local minimum on the energy sur-
face. Moreover, that investigation did not perform
capacity analysis. Regarding the stability of the expo-
nential BAM, several researchers have employed differ-
ent approaches to verify the systematic stability, among
which include Jeng [9] and Zhang [10]. However, using
a single energy function cannot completely verify its
stability.

Although our previous work has estimated the
impressive capacity of an eBAM [7], exploring the
hardware realisation of such a neural network is a
worthwhile task. Chiueh [8], Glasser [11], and Mead
[12] confirmed that the dynamic range of the VLSI
exponential circuits operating in the subthreshold
region is approximately fixed, indicating that this prop-
erty leads to an interesting limitation. It is that the
minimal radix of the exponential circuit must be esti-
mated to obtain the maximum dimension of stored pat-
terns. Thus, finding an optimally small radix to store a
group of given pattern pairs is a critical task. Conse-
quently, updating the radix without loss of the optimal-
ity when more pairs are to be installed is another
problem to be resolved. Moreover, this work also
presents a deterministic approach to encode pattern
pairs in an eBAM such that every encoded pair must
be recollected in a predetermined fault tolerance range.

ECAM X'

&5

Fig.1 ECAM configuration

2 Radix searching of eBAM

Although Chiueh and Goodman [13] proposed an
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exponential Hopfield associative memory which also
utilised an exponential scheme, they did not demon-
strate the stability of the ECAM, whose configuration
is illustrated in Fig. 1. In addition, although Jeng et al.
[9] and Zhang er al. [10] have also, respectively, proved
the stability of the exponential BAM structure, their
proofs are not completely correct. For instance, eqn. 5
of Jeng’s work cannot ensure AE, < 0, because x;' - (x'
— x;) is not necessarily non-negative. The proof of The-
orem 4 in Zhang’s work is erroneous. (Note that in
Zhang’s work, it is called an MBAM, Modified BAM.)
According to Zhang’s eqn. 18, (i.e. the definition of
energy function, the difference of the energy between
the current state and the next state in the first direc-
tion) should be E(X’, Y) - E(X, Y). Thus,

AEx = E(X',Y) - E(X,Y)

M
= — Z exp ('yY{i)YT) Xl x o

i=1

- i exp ('yX“}X’T) y@yT

i=1

M
- (— z exp ('yY”)YT) xWxT
i=1

- i exp («,X“)XT) Y“)YT)

=1

M
# =Y exp ('yY“)YT) X9 (x' - x)T

=1
Hence, by this argument, we cannot conclude that AE,
< 0 (i.e. Zhang’s eqn. 19 and eqn. 20). This confirms
that Zhang’s proof of the stability is faulty. Jeng et al.’s
and Zhang ef al’s proofs are erroneous primarily in
that they focused on using a single energy function to
represent the convergence process of the eBAM.

2.1 Stability of e BAM

Therefore, in this study, we present a novel two-phase
method to verify the stability of eBAM. Assume that
we are given M bipolar pattern pairs, which are:

{(Xlal/l)a(XZsE)s'-'y{XMyYM)} (1)
where

Y: = (yir, vi2, - - -2 Wip)
X;= X, i=j and Y; = Y, i = j. Instead of using
Kosko’s approach [1], we use the following evolution
equations in the recall process of the eBAM:

Yr = 1, if M, yab*X 20
-1, if My X <0

p 1, if M zab¥Y >0
k =
-1, if Z:\il CE,;ka"'Y <0

where b denotes a positive number, b > 1, *-’ represents
the inner product operator, x; and x; are the kth bits
of X and the X;, respectively, and y;, and y; are for Y
and Y, respectively. Herein, an exponential scheme is
used to enlarge the attraction radius of every stored
pattern pair and to augment the desired pattern in the
‘recall reverberation process.

Xi=(zi1, ®ia, ..., Tin) ,

2)
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Theorem 1: The eBAM modelled by eqn. 2 is a stable
system.

Proof: We discuss the stability by observing the behav-
iour of the Lyapunov functions [14] of two directions,
X — Y and Y — X, respectively.

Phase 1: X — Y. Define an energy function:

M
E\(X,Y) ==Y (Xi- X)p¥Y (3)
i=1

Thus, the V, E|(X, Y) can be computed as follows,
M
Ve Br(X,Y) = =) zad™Y (4)
=1

The difference of E, due to a bit’s change, can there-
fore, be derived as:

A Bi(X,Y) =V, Bi(X,Y) - A,
M
= -3 zud"Y (2h - ) (5)
=1

Case I: x; = —x'y, then

Ag Ei(X,Y) = 24}, - (Zf; xikb‘”-'-}’)
= -2z}, - (z})
= =2(z})? = =2(-zx)? <0
Case II: x; = x'y, then
Az E(X,Y)=0
In conclusion, the X — Y phase causes E, to decrease,
Ar E1(X,Y) <0 (6)

Phase 2 : Y — X. Define another energy function:
M
By(X,Y) ==Y (%-Y)pXX (1)
i=]

Thus, the V,, E5(X, Y) can be computed as follows,
M
VuEa(X,Y) ==Y gat®X ()
=1

The difference of E due to a bit’s change, can therefore,
be derived as:

Ay B (X,Y) =V, Ey(X,Y) Ay,

M
== b X - (g - )

=1

(9)

(i) Case I: y; = =)'y, then

M
Ay Er(X,Y) = -2y} - (Zi=1 yikbx"x)
=2y - (vi)
—2(yk)? = =2(-yx)? <0
(1) Case II: y; = y';, then
Ay Ex(X,Y)=0

In conclusion, the Y — X phase also causes E; to
decrease,

A, Ey(X,Y)<0 (10)
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According to the results in egns. 6 and 10, we can infer
that, if the radix is sufficiently large, these two energy
functions evolve to their individual local minima, which
are assumed to contain the stored pattern pairs. Hence,
eBAM is a stable system. Restated, the necessary con-
dition for a stored pattern pair to be recalled correctly
is that it must reside at local minima on each of the
two energy planes, E, and E,, respectively.

2.2 Absolute lower bound of the radix

As mentioned earlier, the radix, », must be larger than
one to make the systems converge and work. In addi-
tion, the larger the b, the larger the SNR (signal-to-
noise ratio) and the capacity [7]. Theoretically, a suffi-
ciently large radix can be used to encode any numbers
of the pattern pairs without any difficulty in recalling a
single pair. However, an infinitely large radix cannot be
implemented in the network’s hardware realisation.
Besides, the fixed dynamic range of the subthreshold
region of the MOS transistor limits the magnitude of
the pattern’s radix and the dimension [8]. Then, what
exactly is the smallest radix which can adequately recall
every stored unique pattern pair? We call this smallest
b the absolute lower bound. The relationship between
the radix and the number of pattern pairs to be stored
thus becomes a critical issue. Zhang et al. noticed a
similar problem, finding an inequality, egn. 23 in [10].
However, they did not offer a deterministic method to
compute the absolute lower bound of eBAM.

To further explore the relationship between the radix
and the number of the pattern pairs, we can start from
the SNR approach to obtain the maximum noise.
Assume that (X;, Y,) is one of the patterns stored in
the eBAM. Thus, eqn. 2 can be rewritten as:

Yk = sgn | ynk - b" + z yipbXn X (11)
i%h

where n is assumed to be min(n, p) without any loss of
robustness, where n, p denote the dimensions of X; and
Y,, respectively. Since we expect Y, to be recalled when
X), is presented to the network, the first term on the
right side of eqn. 11 is the signal; the second term is the
noise. If the y; has the same sign as yj, the following
criterion must be satisfied.

2.3 Absolute stability criterion

Assume that (X, Y,) is one of the patterns stored in
the eBAM, while all of the stored pattern pairs are (X,
Y), i = 1, .., M. For any stored pattern, its signal
strength exceeds that of the noise:

e e (12)
i#h
is called an absolute stability criterion. This criterion

states the sufficient condition to recall any stored pat-
tern.

Proof: The upper bound of the noise is as follows,

S yrb® X <3 [y | 60X

1#h i#h

Hence, the signal must exceed the noise to obtain a
correct recall,

671 =8 > 3 b = S
_ i#h i#h
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The only unsolved term is the right-hand side of
eqn. 12, (i.e. E;,; b*%), To ensure that every pattern
pair is recalled when it is the desired pattern pair, the
maximum of the noise term must be computed. Then,
the derived radix herein is adequately large to cause the
signal to overpower the noise. The stored patterns are
assumed to be individually unique. We consider the
worst case of pattern pairs distribution to the signal.
Thus, the number of patterns Xjs, which are 1-bit
Hamming distance away from the desired pattern X, is
at most Cy". Similarly, the number of patterns of Xjs
which are 2-bit away from the desired Xj, is at most
Cy". Following the same observation, we can have the
following formulation.

Assume that the number of noise terms, M — 1, pos-
sesses the following largest noise condition:

r-1 r
dcr<M-1<) Cp
k=1 k=1
r=1 r

Y. Cpr<M<) Cp (13)
k=0 k=0

where r denotes the largest Hamming distance between
the noise patterns and the desired pattern when the
noise patterns which are orderly and, respectively, 1-
bit, 2-bit, ..., (r — 1)-bit away from the desired pattern
are stored in the network. We refer to this pattern dis-
tribution as the worst case distribution. Restated, we
have the following tabulations for X; - Xj, in Table 1.
Notably, r in eqn. 13 is unique and can be found by
computer programs or other skills if M is given (i.e. the
r is deterministic as long as the number of pattern pairs
is known).

Table 1: Noise terms with largest noise power

Xi-Xh Number of terms  HD to the signal
n-2-1 ¢ 1-bit away
n-2.2 " 2-bit away
n=2-(r-1) ' (r-1)-bit away

HD = Hamming distance

Substituting eqn. 13 and the results listed in Table 1
into eqn. 12, yields the following:

S T el
i#h
r—1 r—1
=) cp-bn* 4 (M— 1- Ec;;) L
k=1 k=1
r—1 r—1
=57 ) CF-b~% +(M— 1 —ZC;‘)-b'?’]
k=1 k=1
Tl r—1
1> ():C;: S 1) + (M = Zcp) Y s
k=0 k=0

(14)
Therefore, we can conclude that the following theorem
is valid.

2.3.1 Theorem of absolute lower bound of the
radix: Assume that (X, Y,) is one of the patterns
stored in the eBAM, while all of the stored pattern
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pairs are (X;, Y)), i = 1, ..., M. For any stored pattern,
its signal strength exceeds that of the noise. We con-
sider the worst case of pattern pairs distributions to the
signal, the number of noise terms, M — 1, possesses the
largest noise condition, and r denotes the largest Ham-
ming distance between the noise patterns and the
desired pattern. Any b which satisfies the condition
below can recall all of the M different pattern pairs
stored in the eBAM.

r—1 r—1

2> Cp-b* 4+ (M £ ZC},‘) b7 (15)
k=0 k=0

is called the theorem of absolute lower bound of the

radix. Restated, the absolute stability criterion is a pre-

requisite for the theorem of absolute lower bound of

the radix.

2.4 Radix searching
In a typical CMOS VLSI process, a transistor operat-
ing in the subthreshold region and working as an expo-
nential circuit has a dynamic range of approximately
10° to 107 [8, 11, 12]. Thus we need to study how the
storage capacity of the eBAM changes if the dynamic
range of its exponential circuits is limited. Assumed
that the dynamic range (D) of the exponential circuits
is fixed and:

D=b"
b > 1, where n denotes the number of bits in the mem-
ory patterns. Then, as n increases, & decreases and the
capacity no longer scales exponentially with »n. If n is
extremely large, b is close to 1 because D is fixed. Then,
the validity of recalling stored patterns deteriorates
according to the result of [7]. Chiueh and Goodman
proposed the ECAM; their work can help us to under-
stand that the asymptotic storage capacity of the
ECAM is proportional to the dynamic range (D) when
the required attraction radius is 0.

While considering the dynamic range limitation [8],
an approach must be developed to obtain the minimal
radix, b, when a certain number of pattern pairs are
given to be stored.

2.4.1 Deterministic radix searching algo-
rithm: According to eqn. 2, the following two equali-
ties are sufficient conditions for a pattern pair (X}, ¥)
to reside in a stable state.

M
F:I’:jk = mjk Zmik bY‘Y_r >0
=1
M
Fy = yie 3 vin - 050X >0 (16)
=1

To find an optimal radix for the eBAM, a cost function
is defined, which is the function of the radix, b.

J(b) = ZEFM -H(Fy,,)
J_lk 1
P

_ZZ y;k'H y_m) (17)

i=1 k=1

where H(¢) = 0 if t > 0 and H(¢) = 1 if ¢ < 0. This cost
function has several properties to be a good measure of
- the radix.
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(1) If all of the F, kS and Fyus surpass 0, J(b) = 0. That

is, the optimal b is found.
(i) If any of F.y or F,j; is smaller than 0, J(b) must
surpass 0.

The above-mentioned properties imply that a gradi-
ent descent approach can be aptly used to reach J(b) =
0. Hence, the algorithm of searching the optimal radix
is summarised as:

b(0) =1.0

bt +1) = b(t) — 3;?’, ¢>0 (18)
M n M P
S Z Zzwjkwtk (Z ys’uyju)
J=1 k=1i=1 =1

> in-Y,-fl - H(Fl','k)

n
YikYik - (E mis-'rjs)
s=1

A in‘xj L H(F!hk)

M=

N5

k=1 4

1M
i

I
M
M-

M

Ttk - (Y: - Y5)

<,
Il
-
ES
Il
-
-
Il
-

g s 'H(Fa:jh)

M=
M=
M:

YikYik - (Xi - X;)

<
Il
1A
>
Il
-
"~
Il
-

sttt H(ijk) (19)

where g in eqn. 18 is a constant to determine the step
size of the gradient descent approach. Hence, this algo-
rithm can deterministically compute the absolute lower
bound of the radix.

2.4.2 Optimal radix updating algorithm: In Sec-
tion 2.4.1, we merely discussed how to find an optimal
b right before pattern pairs being stored in the eBAM.
If more pattern pairs are to be stored after some pat-
tern pairs have been installed, the original radix is not
an optimal radix any more. Hence, two methods can
solve this problem. First, all of the pattern pairs,
including stored pairs and pairs to be stored, are taken
into the algorithm in Section 2.4.1 to compute a new b.
This method has a large overhead. That is, all of the
stored pattern pairs must be extracted from the eBAM
before searching for another optimal 5. Hence, we pro-
pose a method to update the radix based only upon a
given additional pattern pair.

Assume that M pattern pairs are already stored in an
e¢BAM with a radix by, thereby causing all of the stored
pairs to remain at their respective stable states. Then,
we also have the following equation according to
eqn. 17,

Jo() =0, Vb3 b (20)

where Jy(b) is the cost function of the eBAM with only
the original M pattern pairs of patterns. If more pairs
are to be encoded in this e BAM and every pair is still
in its own stable state, a sufficient condition to satisly
this demand is that the new radix must be larger than
the original radix [7]. Assume that (X}, Y}) is the (M +
1) the pair to be stored in the eBAM which has already
stored M pattern pairs. Therefore, the overall cost
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function of the eBAM after the (M + 1)th pair is stored
is formulated as:
M+l n
JO) ==Y > F
i=1 k=1
M+1 p
e Z Z Yik F ' (21)
F=1 k=1
where:
M+1
F,. =k E Zay - OV
=1
M+1
F;Jk = Yk 2 Yik * bX.'-Xi
i=1
If the H(-) terms are 0 given b = b, the original b, can
sufficiently store and recall the additional pair. Thus,
the algorithm stops. On the other hand, the H(-) terms
are 1, which can be taken out from the new cost func-
tion for the sake of clarity. Hence, the new cost func-
tion can be rewritten as:

J'(b)

M+1
+Ynk z Yik - bx.»-x,)

i=1

n M
= - Z 2 [Fz,0 + zjk@ng - b Y5)
M
+bP + i Z Tik* by"'y")

i=1

P M
Z Z Fyju + yjkynk - b3 %]

k=1 \j=1

M
B+ yna Yy b 'Xh)

i=1
n M M
=" (ZFI,I: +b”+2'z:ﬂikxnk -by"'y')
- k=1 Jj=1 =1
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P M
_E(ZFyJﬁ-'-b +2- Zytk'yhk bX;.X)

k=1 \iji=1 i=1
n M r M
S 5P B BLL e P B0
k=1 j=1 k=1 j=1
n M
+{-—ﬂ b -2 Z-’ﬂuk Tik pYn-Yi
k=1 i=1

P M
e B —2223!&1; “Yik -bx"'x'}

= Jo(b) + Ja(b)

(22)
Since we have assumed all of the pattern pairs in the
eBAM before the installation of the extra pair are
recallable, then Jy(b) is 0. Also, any new radix b must
satisfy the condition given in egn. 20 to ensure that all
of the M + 1 pairs remain in stable states. Thus, J(b)
can be deemed to be the legitimate new cost function of
eBAM.

n M

Ja(b)= —n-b° —ZZEI'M, “Bix pYn-Yi
k=1 i=1
P

M
—p b =2) > gk yan - b
k=1 i=1
(23)

Again, a gradient descent approach is used to find the
optimal b for eBAM.

b(0) = bo
et
8Ja(®) _ _ pp.prt
R
n M
> 22 thk T (Y- Y3) - pYn-Yi-1
k=1 i=1
—np-b"!
P M
i Z Em ik (Xn-X;) - pXnXi—1
k=1 i=1

(24)

Notably, the above algorithm stops when the overall
cost given in egn. 21 is 0 (i.e. J'(b) = 0). The final b is
the updated radix for all of the M + | pattern pairs.
Comparing eqn. 19 with eqn. 24 provides a significant
meaning of the updating algorithm. Although egn. 19
has the O(n*) computation complexity, eqn. 24 reduces
the complexity to only O(»n?) and still maintains the
optimality of the radix.

2.4.3 Guarantee recall training algorithm: In
the previous Sections, we considered that the retrieval
key is always correct. Thus, the retrieval key cannot
provide the error correction ability or so called fault
tolerance ability. In the following, we present a deter-
ministic algorithm which will select and ‘train’ the
eBAM with pattern pairs to ensure that all of the
stored pairs are guaranteed to be recalled in their own
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basins, respectively, with a certain basin radius. Such
an initiative attempts to ensure that every stored pat-
tern pair is guaranteed to be recalled if a given input
pattern located in its basin.

Assume that an eBAM is given M pattern pairs, (X,
Y)), ... (X3, Yy). Then, a training algorithm of the
eBAM can be tabulated as follows.

Step 0: Allow b(0) to be the initial value of the radix.
Where b(0) is computed by the searching algorithm of
Section 2.4.1.

Step 1: Repeat Step 1 to 3 for (X}, Y1), ..., (Xars Yap).

Step 2: Reverse the sign of o bits of X, and Y,, respec-
tively, to be X and ¥, where o denotes a predetermined
fault tolerance range (i.e. the radius of the basin for a
given pair to reside). If X, - X > X;- X, and Y, - Y > Y,
- Y, Vi, i=1, .., M,i=g, then take (X, ¥) as the input
training pair. Otherwise, go to Step 1 and try another
pair.

Step 3: Take (X, Y) as the training pair of the follow-
ing two equations until J(b) = 0.

J(b) =

n z’\«‘q’ (M
E : 2 : Y'Y E : e

- Tyk Tik - b' - H (mgk Tik 'bX X)
k=1

i=1 =]

P M M
B Z Ygk Zyik X g (ygk Zyik » bX"X)
k=1 i=1 =1
(25)

bt +1) = b(t) — q- % (26)

M

aJ(b) P ZZ"F%‘IM (YY) - pYeYist

b :
k=1 1=1
M
-H (-Tgk Z“'ik i bY"Y)
i=1
r M
B Z Zygkyik : (.)(I . X) " bxi-X)—l

k=1 i=1
M
H (yyk > vk ,bx,--x)
i=1
(27)

The final b is assigned to be b(0) for the training of the
next input training pair. Go to Step 1 until all of the
pattern pairs are trained.

Step 4: After all of the M pairs either deleted or
trained, the final b is used to be the radix of the eBAM.

Notably, in the above algorithm, Step 2 aims to avert
any confusion between the two identical pairs, and to
increase the radius of the (X,, Y,) pair, because the
reversion of the signs of o bits in the basin radius of
the training pair. Thus, those pattern pairs trained and
stored in the e BAM are guaranteed to be recalled when
the input pair is located in its basin of which the radius
1S .

The cost function in Step 3 is different from eqn. 17
because in this algorithm we train one pattern pair, say
(X,. Y,), each time. If the (X, ¥), which is o bits away

-from (X,, Y,), can recall (X,. Y,), it must satisfy the
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following two conditions according to eqns. 2 and 16,

M

Tgk ink . by"y >0
i=1
M

Yok 3 ik - bXX >0
i=1

Hence, eqn. 25 is defined as the cost function to train
X T

Table 2: Simulation of searching an optimal radix for the
8 x 8 eBAM

No. b No. b

2.790619 6 2.855878
2.790124 7 2.832530
2.757570 2.790527
2.733255 9 2.807437
2.738821 10 2.821274

O & WK =
oo

2.75¢

2.70F

2.65F

2.601

2.55f

250 L s s L S A L )
1.0 15 20 25 3.0 35 4.0 L5 5.0
iterations

Fig.2 Radix in searching process

4000
3500
3000
2500

o

—; 2000
1500
1000

500

0 L L L L )

1.0 15 20 25 3.0 35 4.0 45 50
iterations

Fig.3 Cost function in searching process

3 Simulation analysis

Example 1: The radix searching algorithm is aimed at
looking for a minimal radix which can still recall all of
the pairs to be stored. Herein, we apply the algorithm
to store 200 pattern pairs in an 8 x 8 eBAM, and
repeat the algorithm for ten times to obtain Table 2.
Note that the reason why the bs are different in Table 2
is that the 200 pairs are randomly generated in each

IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 4, July 1998



simulation. However, the radix derived from the
searching algorithm is close to the natural base, ¢ =~
2.71828. This finding thus confirms the feasibility of
using the natural e while implementing the eBAM by
VLSI circuits. Figs. 2 and 3 illustrate examples of the
evolution of b and J(b), respectively, during the search-
ing procedure.

Example 2: An 8 x 8§ eBAM is stored with 70 different
pattern pairs. We use the radix searching algorithm in
Section 2.4.1 to obtain the radix which makes the
eBAM stable and pairs recallable, and then use the
training algorithm in Section 2.4.3 to derive the radix
which ensures that every pair is recalled within its
basin, o = 1. Table 3 summarises those results.

Table 3: Simulation of training the 8 x 8 e BAM

No. b (searching) b (training) No. b (searching) b (training)

1 2.251508 2.270246 6 2.349620 2.532752
2 2277386 2.277387 7 2.134500 2.779011
3 2213780 2.664818 8 2.317027 2.491975
4 2201022 2830397 9 2.263478 2.509213
5  2.438400 2.575281 10 2.304018 2.326273

2.4

2.3F
b

22F

290 L L 1 L 1 1 L sk )

2 4 6 R | IR R T TRl s [ T
iterations

Fig.4 Radix in training process

20r

15

e L L L 1
2 4 6 8 10 12 %168 I
iterations

L

Fig.5 Cost function in training process
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Notably, as expected, the trained b is always larger
than searched b. The reason for this discrepancy is that
we want every trained pair to be recalled with o = 1.
This condition is more restrictive than merely being
statistically recallable. After the training procedure, all
of the seventy pairs are correctly recalled with one bit
error in the above ten simulations. An example of pairs
is correctly recalled with one bit error in the above ten
simulations. Figs. 4 and 5 present examples of the evo-
lution of b and J(b), respectively, during the training
procedure.

4 Conclusion

This work employs a two-phase method to demonstrate
the stability of eBAM. A deterministic method is also
proposed to calculate the absolute lower bound of the
radix which is the smallest radix capable of recalling
every stored pattern pair. Furthermore, to preserve the
optimality of the radix due to the limitation of dynamic
range, we also present another algorithm to update the
optimal radix for the eBAM when additional pattern
pairs are to be stored. Finally, a deterministic algo-
rithm to train the encoding of pattern pairs is also
derived, capable of ensuring that every trained pair in
the eBAM is accurately recalled within a predetermined
basin radius. Furthermore, simulation results verify all
of the theories presented herein.
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