Cell-based implementation of radix-4/2 64b dividend
32b divisor signed integer divider using the

COMPASS cell library

C.-C.Wang, C.-J.Huang and G.-C.Lin

Abstract: A high-speed 64b/32b integer divider using the digit-recurrence division method and
the on-the-fly conversion algorithm, is presented. A fast normaliser is used as the preprocessor of
the proposed integer divider. To reduce maximum division time, the proposed divider uses radix-
4/2 division, instead of the traditional radix-2 division. On-the-fly quotient adjustment is also
realised in the converter module of the divider. The entire design is written in the Verilog hardware
description language using the COMPASS 0.6 um 1P3M cell library (V3.0), and then synthesised
by SYNOPSYS. Finally a real chip is fabricated and fully tested. The test results are very
impressive. A performance evaluation of a 128b/64b signed integer divider using the same design

methodology is also included in this study.

1 Introduction

Integer division is a critical operation in CPU design, since
the number of clock cycles to complete an integer is
usually very long and unpredictable [1-3]. The role of
division is becoming more and more critical, owing to the
requirement of signed computer arithmetic, modulus
computation, the calculation of encryption keys, and so
on. Division algorithms can be roughly classified into two
categories: digit-recurrence methods [4, 5], and functional
iteration techniques [6]. The former is most commonly
used. In the digit-recurrence method, there are traditionally
two types of division schemes, (i.e. restoring and nonres-
toring schemes). However, they both require multiple
operation steps to derive a quotient bit. Not only is the
efficiency drastically poor, but also a long adder/subtractor
is needed to execute the remainder bit adjustment. These
difficulties lead to the degradation of the entire micropro-
cessor. Although a high-radix division algorithm has been
proposed to overcome these difficulties [5, 7], there are a
few things left unsolved. First, how to efficiently normalise
the dividend and the divisor. Secondly, how to correctly
adjust the final quotient and remainder without paying too
many H/W overheads. In addition, although much research
work has been proposed to either enhance the speed or the
throughput [4-6], [8-10], the real hardware realisation of a
long divider is still a challenging task. The difficulties
involved in the hardware realisation include meeting the
minimal clock period, rapidly normalising given data and
controlling the operation sequence of different modules
such that no racing problem occurs.

O IEE, 2000
IEE Proceedings online no. 20000160
DOI: 10.1049/ip-cdt:20000160

Paper first received 27th November 1998 and in revised form 14th
September 1999

The authors are with the Department of Electrical Engineering, National
Sun Yat-Sen University, Kaohsiung, Taiwan 80424

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

In this work, we complete the VLSI implementation of a
long 64b/32b signed integer divider where a pipelined fast
normaliser, radix-4/2 digit-recurrence algorithm, and on-
the-fly conversion method are used [5]. The proposed
design methodology can also be applied to a longer divider
(e.g. 128b/64b signed integer divider). All of these works
are implemented physically by using Verilog code inte-
grated with the COMPASS 0.6um 1P3M cell library in the
Cadence cadtool environment. The final chip layout has
been sent to the TSMC (Taiwan Semiconductor Manufac-
turing Company) to produce a real product. Finally, the real
chip in a DIP package is fabricated and fully tested by an
IMS digital tester of ATS. The test results verify the
correctness of our design.

2 Cell-based design of 64b/32b signed integer
divider

In this work, we combine the radix-4 and radix-2 division
algorithms [5] to increase the throughput, and only small
adders/subtracters are employed in the entire design.
Meanwhile, we also present a fast normaliser so that the
number of cycles to complete a correct division can be
further reduced.

2.1 Digit-recurrence theory

Assume x, d, g, rem to be the dividend, the divisor, the
quotient, and the remainder in the division operation,
respectively. We also denote the radix of the division is
denoted r. Define a residual (partial remainder) w so that in
the jth step of division:

wlj] = r/(x —d - qlj) (1)

According to [5], the digit-recurrence algorithm is
described as follows:

(i) one digital arithmetic left-shift of w[;] to produce r-w[/]
except the first step;

(i) determination of the quotient digit g;,, by the quoti-
ent-digit selection function;

(iii) generation of the divisor multiple d-g;.;

(iv) subtraction of d-q;,, from r-w[j],

where

—d<wljl<d 2)
wn] - r " if wn] >0

rem =
(wn] +d) - r" if win] <0

(3)

Fig. 1 shows the data flow of a division step.

Although the above algorithm has been widely covered
in the literature [5], there are many unsolved difficulties
when it comes to realising such a divider in hardware.
Further problems will occur when a higher radix is
employed to increase the throughput because of increasing
cycle times and circuit complexity. Many problems will
appear during the implementation of the signed integer
divisor, including the following.

(i) Fast normalisation of the dividend and the divisor is
used as the preprocessor of the integer divider, since the
iterative digit-recurrence mechanism mentioned above is
only applied to fractional operands and quotient.

(ii)) A long adder is neceded at the adjustment of the
remainder if a carry-save adder is employed at step (iv)
of the digit-recurrence algorithm.

(iii) Extra adjustment actions are required when the last
cycle of the division contains nonmultiple digits of the
radix. (For instance, the radix is 4, but only one bit is left in
dividend to be processed.)

(iv) The adjustment of the remainder, based on eqn. 3, is
required when the signed division is executed.

(v) A data flow control unit is required, which provides
correct timing control such that the results of the division
can be correctly placed on the output ports.

In short, the above problems will occur during the realisa-
tion of a long signed divider. If these problems are not
resolved efficiently, the hardware divider will be large and
slow.

wii]

shifter

rwlj+1]

quotient-digit selection
function

[
qi+1 d

multiplier

I
Gj4q d

-

subtraction

wlj+1]

Fig. 1 Date flow of division step

110

2.2 Fast normaliser

A binary data normaliser is one of the major time bottle-
necks in dividers [5, 6]. If the sequential style of normali-
ser is used, the average time for a dividend or divisor
normalisation will be great. The task of normaliser is to
find the bit position of the first leading ‘1’ of the given
binary data. Since the data is unknown, the worst case of
the time complexity will be O(N), [8, 9], if no special
design is utilised to resolve this problem. From the view-
point of data flow, the combinational design will be faster
than the sequential design. Hence, we adopt a fast and
scalable design methodology to normalise the binary data
with a time expense of ~ O(log N).

Assume the length of the data word is N, which is the
power of 2. The entire word is divided into subwords with
the length n, which is also the power of 2. Hence, the
number of subwords is N/n. We can utilise modified
priority encoders to locate the leading ‘1’ in a subword.

2.2.1. Design of the fast normaliser: The bit posi-
tion of the leading ‘1’ can be detected by an n-bit priority
encoder (PE). The output of the PE is the binary repre-
sentation of the position of the leading ‘1’ in the subword.
The length of the output representation is, then,
k=log, n]. The function table of the PE is shown in
Table 1.

We still cannot figure out where the global leading 1° is
at this stage, even though the respective leading ‘1’ is
known in each subword. A total of N/n n-input OR gates
and another PE, the high-level PE, is required to generate
the select signals which indicate in which indicate in which
subword the leading ‘1° is located. This high-level PE, and
the PEs used in the subwords, are arranged in a hierarchical
format. The output of the high-level PE is the selection
signals of a total of k N/n-way-to-1 MUXs. The architec-
ture of a 16-bit normaliser is shown in Fig. 2 where N=16

Table 1: Function table of the priority encoder (PE)

Input (n bits) Qutput (k bit) Decimal notation
IXXX... X 1.1 0
01XX...X 11...10 1
001X...X 11...01 2
000...0X 00...00 n—1
di5..d12 di1.ds d7..d4 d3..d0
4 4 2 } 4 2 } 4 A T4
(Tj PE PE PE PE
J |
| ——
[3¢
PE 32|10 3|2 1|0

NZ S3 S2 S1 S0
Fig. 2 Architecture of fast normaliser
N=16,n=4

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

d63..d48 d47..d32

L &

16 bit 16 bit
N normalised g I'K)ﬂ'l'lﬂ"lﬂ“i:z

d31..d16

d15..d0

encoder

PE alz|1lo |a

4to1 |+ 4to1
MUX o MUX

4t01 —+ 4to1
ﬁ: MUX MUX
1 I' l
S5 + 5S4 S3 s2 S1 S0
Fig. 3 Architecture of 64-bit normaliser

and n =4. Based on 16-bit normalisers, a 64-bit normaliser
can be further constructed as shown in Fig. 3. Notably, the
outputs of these PEs are utilised for two tasks:

(i) computing the required number of cycles to generate
the correct quotient and the remainder;

(ii) instructing a barrel shifter to shift the original data
word properly.

2.3 Radix-4 division with a radix-2 selection
function

Next we resolve the redundant step occurring at the last
step of the division. Since the radix-4 is used in the
division, there is a possibility that the last stage of division
has only one bit left in the dividend to be processed. If only
one radix-4 selection function [5] is used at this stage, an
extra adjustment step will be needed to correct the result.
This introduces additional delays and hardware cost (e.g.
long adders). We thus integrate the radix-2 selection
function in the division to overcome this difficulty. The
control unit will monitor the number of bits left in the
dividend such that the radix division will be executed at the
last stage when the number of bits of the dividend is odd.
Moreover, in our design we can take advantage of the fact
that the positions of the leading ‘1’ in the dividend and the
divisor can be detected in the normaliser, such that the total
number of division steps is well determined before the
iterative digit-recurrence mechanism.

An analytic expectation of cycles required by such a
radix-4/2 method is given as follows: recall that the
following equation holds according to the definition of
the integer division.

x=¢q-d+rem 4)

After being normalised by the PEs described in the
previous Section, the dividend and the divisor become:

xmX .3 W8 3

d=D.27W-b ©)
where X and D are the integer dividend and divisor,
respectively, @ and b are the number of bits that x and d
shifts, respectively, and N is the bit length of the data
words. Note that we need to multiply x by 272 at the
beginning in order to make x <d. Hence, an interesting

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

result will be obtained after a few essential mathematical
manipulations.

x=gq-d+rem

SX-27W9.22=p.27N0 . g 4 rem

S X=D.27 0. g 04D | oy JN-a42)
=D.q-22 4 rem . 2N 042

Thus, we conclude that:

Q=gq- 27" ©®)
REM = rem - Z(N—IJH'Z e w[f o2 l] ; 2*{(57#)4»2) 4 2(N—a)+2
=wj+1]-2" Q)

where w[j+ 1] is the residual generated at each iteration
step of the division algorithm.

We derive that, since Q is an integer, we only need
to compute the b —a+2 digits of ¢ to generate the
quotient, i.e. we do not have to calculate every digit of
Q to obtain the correct result. This number of digits
(i.e., b — a+2) has been computed and predicted in the
normalisation phase such that the required cycles to
compute the division result are drastically reduced.
Also, the cycles required by the radix-4 division steps
are |b —a+2/2], while the cycles for radix-2 division
steps are (b — a)%2. Then, the longest division which
occurs at 20%/(23! +1) is 17 cycles per 2-bit quotient. If
the initialisation and the adjustment of the remainder
are both considered, the total cycles for such a division
are (17+3+3)=23. The shortest division requires
only three cycles, which occurs when the dividend is
Zero.

Note that the redundant digit set {—2, —1, 0, 1, 2} is
employed in the generation of two digits of the quotient. To
avoid the carry ripple effect produced by any negative
number, we utilise the on-the-fly conversion method to
produce the quotient digits such that a large adder/subtrac-
ter will not be needed.

2.4 Radix-4 (high radix) quotient selection
function table

According to eqns. 1 and 6, the quotient digits that we will
get after j steps are:

J
ail=> g-r’)
i=1

where g; is the quotient bits generated at step i, and r is the
radix. In each step of deriving the quotient digits, the
residual will be computed based on the following equality:

whi+1]=r-wljl-D-g;y, &)

Meanwhile, the residual must be bounded — D < w(j] < D.
Thus, we tend to utilise a table look-up method to realise
such a function.

4j+1 = SEL(wJj]. D) (10)

The SEL(:) in the above function is called ‘quotient
selection function’ [5], which is shown in Fig. 4.

2.5 Hardware consideration of signed division

Notably, the sign of the remainder should be the same as
that of the dividend. This results in an adjustment problem
of the remainder at the last stage of the division. Usually a

11

t+1+[logyrpl t+1+[loggrpl
{rws(i]ly—~ 1 [{rwslil},

CPA
1
y

t+1+[logyrpl
qﬂﬂu-digit 81
function 3 z {d)
table
q] +1

Fig. 4 Quotient-digit selection function table with inputs and outputs

full word-length adder is required to handle this problem.
Although Bashagha et al. [4] proposed an algorithm to
avoid using the long adder, one full word-length adder is
still needed to generate a selection signal before the
adjustment of the remainder in their design.

In our design, both the dividend and the divisor are
converted into positive numbers before the normalisation
as Fig. 5 shows. Their sign information is then kept and
used to select the result generated by the 35-b carry-save
adder for the remainder adjustment. This will simplify the
entire design and incur no loss of speed.

2.6 Data flow control unit

In Fig. 6 we present our cell-based design for the 64b/32b
signed/unsigned integer divider. The detailed flow control
is described as follows.

(i) Convert the dividend and the divisor into positive
numbers. Then use the fast normaliser to execute the
normalisation.

(ii) Compute the required cycles for radix-4 and radix-2
division by the positions of the leading ‘1’ of the dividend
and the divisor which can be generated by the normaliser.
(iii) In cach radix-4 division cycle, use the radix-4 selec-

32 bit divisor 64 bit dividend
32 32, 64 32
Pselect
684 ¥ 64 bit 2's complementer

64 bit
210 1 MUX

Pout

Fig. 5 Conversion of dividend and divisor into positive numbers

112

dividend x Lo,
| [omws |
1} [rwslil
J
a5y //36
Gj1ed select
v
35 rd
33 bit on-the-fly 36 bit CSA
conversion
33 wefj+1] 36
1 ws[j+1]

Fig. 6 Design architecture of 64b/32b signed/unsigned integer divider

tion function to generate 2 bits for the quotient. A 7-b carry
propagate adder is required at this step.

(iv) In each radix-2 division cycle, use the radix-2 selec-
tion function to generate 1 bit for the quotient. A 4-b carry
propagate adder is required at this step.

(v) A radix-4/2 on-the-fly converter is used to generate the
quotient and avoid any possible carry ripple. This conver-
ter is controlled by multiplexers, so that it can be used by
the radix-4 selection function and the radix-2 selection
function.

(vi) Use a 35-b carry-save adder to filter out the carry
ripple produced in every quotient generation step. Notably,
the error will be absorbed in the next usage of the selection
function.

(vii) The last stage is to adjust the remainder by a fast
adder, whose bit length is 64 4 log,» + 1 =67. Meanwhile,
the barrel shifter in the normaliser is used to produce the
final remainder.

Notably, the hardware penalty of using the radix-4/2
division is that a total of 133+65+4+67 2-to-1
MUXs, plus a few simple primitive gates are needed in
addition to the original H/W of a pure radix-4 selection
function. However, the time gain in handling the adjust-
ment for 1 bit quotient is worthwhile.

3 Performance evaluation and chip
implementation

3.1 Performance evaluation of a 128b/64b signed
integer divider
To compare with currently available design methodologies
for long integer dividers, we extend our design approach by
using the Verilog HDL incorporated with the COMPASS
0.6 um 1P3M cell library (version 3.0) to synthesise such a
128b/64b signed/unsigned divider by SYNOPSYS. The
detailed numerical report shown in Table 2.

Although the longest delay is almost 18 ns, it does not
imply that the shortest period of the working clock has to
be the same value. The reason is that the division by the

Table 2: Performance evaluation by SYNOPSYS

Part name Total area (gate count) Critical delay (ns)
Combinational 17947 17.56
Control unit 348 7.25

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

Table 3: Performance comparison of 128b/64b integer dividers

Design Area (gate count) Longest delay (gate delays) Longest delay (cycles)
rpl model of [11] =~ 100 000 = 12 000 ns —

bla model of [11] =100 000 = 1200 ns -

Divider of P-Il [1] (NA) (NA) 33 (64b/32b)

Our design < 20 000 41 x12=492 ns 41

digit-recurrence method requires many ‘steps’, while each
step is triggered by the working clock. We will find out
what the maximum working frequency is later by simula-
tions. The digit-recurrence is based on the clock cycles. We
thus randomly generate over 30000 test vectors to find out
the possible shortest period of the clock. The result shows
that a clock with a 12ns period will provide the correct
division result.

To realise the performance improvement of the proposed
design in the long integer division, Table 3 shows the
comparison with other published designs.

The above results show that our design possesses
advantages both in area and speed.

3.2 64b/32b signed/unsigned integer chip
implementation

Owing to budget limitations and performance comparison
with current commercially available CPU integer dividers,
we implemented a divider chip in a 64b/32b format. The
entire design procedure was as follows.

Step I. Respectively develop the Verilog synthesisable
RTL code and nonsynthesisable behavioural code of the
divider. Then, apply thousands of randomly generated test
stimuli to compare the results of these two versions of
Verilog code to verify function correctness.

Step 2. Use SYNOPSYS integrated with 1P3M
COMPASS 0.6 um cell library to synthesise the RTL
code so that the gate-level Verilog code is generated.
Repeat Step 1 to verify that the results of behavioural
code, RTL code and the gate-level code are the same in the
presence of thousands of test patterns. At this stage, we
find that the maximum operating frequency is up to
150 MHz with pads, and up to 200 MHz without pads.
Step 3. Stream in the gate-level Verilog code in the
Cadence design tool. Use Cell3 automatic place and
route tools to generate the abstract view and the layout of
the chip. At this stage, a total of 38706 transistors are
contained in the final lagrout, as shown in Fig. 7. The total
area is 3351 x 3312 um~, while the package is 40-pin DIP.
We tended to reduce the 1/0 pins because of the budgetary
problem. Hence, the I/O data are decomposed into bytes
and transmitted in serial batch mode.

Step 4. After the final layout is generated, the TimeMill is
utilised to execute the full-chip-scale post-layout simula-
tion. The test patterns produced by the Verilog behavioural
code are fed into the TimeMill for testing under different
clock rates. At this stage, we find that the chip functions
correctly up to a 50 MHz clock.

pcholl

pcSo@1

=
s
U
Fig. 7 Final layout of divider chip

To present the superior design of our divider chip, we
compare our work with currently available CPU integer
dividers, including [2, 3], as shown in Table 4. Note that
the entry in the table is the number of clock cycles.

3.2.1. Pin-out assignment consideration: As we
mentioned before, the pin count and chip area are strictly
limited by a fabrication budget. The dividend and the
divisor are partitioned into bytes and then sequentially
read in the registers inside of the chip from low byte to
high byte. They share a byte-wide input port, ‘Operand’ (8
bits). The selection of dividend or divisor is determined by
a signal *Wselect’. (1 = dividend, 0 = divisor).

Similarly, after the division is done (‘OK’ = 1), the results
including the quotient and the remainder are output at
‘Result’ (8 bits). ‘Wselect’ determines which one is selected
(1 =remainder, 0 = quotient). Another 3-bit ‘Index’ signals
are used to indicate which byte the ‘Result’ is delivering. For
instance. ‘Index’ — (000) denotes the lowest byte is
presented at ‘Result’; ‘Index’ =(001) denotes the second
lowest byte appears at ‘Result’, and so on.

In addition to the above operands’ I/0 signals, there are
a few signals required in integer division, including ‘Sign’
(1 =signed operation, 0=unsigned operation), ‘Start’

Table 4: Cycle-based performance comparison of 64b/32b integer dividers

Pentium

Cyrix 6 x 86MX Our divider

42 -4
(longest - shortest)

Integer division

23-3
(longest - shortest)

45-13
(longest - shortest)

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

113

Operand(8 bit) Result(8bit)
RNl P
Index(3 bit)
7
Wselect oK
ke radix-4/2 Overflow
i 64bit/32 bit
Sion signed/unsigned
Start integer division
chip
Test
_Reset
Clk

Fig. 8 Entire pin-out of chip
Excluding 12 power pins.

(1 =start to execute the division), ‘_Reset’(asynchronous
reset signal), ‘OK’ (1 =division is done), ‘Overflow’
(denotes either overflow or divided by 0), ‘CIk’ (clock),
and ‘Test’ (1 =test mode, 0 = normal mode). Meanwhile,
12 power pads are required in the chip. Hence, the real chip
is packaged in a 40-pin DIP. Fig. 8 shows the entire pin-out
of the chip.

3.2.2. Testability design consideration: To observe
the contents of internal registers should the chip malfunc-
tions, a test mode is also taken into the chip implementation.
When ‘Test’ is 1, bit2 to bit0 of ‘Operand’ are used as selection
signals to dump the contents of the register, which we like to

i

§
1 oSS -y
Fig. 9 Die photo of chip

~ 18

observe at ‘Result’. Meanwhile, the 3-bit ‘Index’signals are
currently used to indicate which byte is placed at ‘Result’.

3.3 Testing the real chip of 64b/32b signed/
unsigned integer divider

The real 64b/32b chip has been tested by the ATS
Company. IMS digital tester. The die photo of the chip is
shown in Fig. 9. The chip has been tested by 1000 groups
of dividend and divisor pairs, which are randomly gener-
ated, and the results of corresponding quotient and remain-
der pairs are all correct. The maximum operating clock for
the chip is up to 50 MHz. The execution results of the
testing patterns are summarised in Table 5.

Table 5: Execution of different cases of operands

Operands’ cases Execution results Number of
clock cycles
Normal case: If *Sign’ =0 and quotient is not overflow
dividend > divisor, (< 4294967295,,), quotient and remainder are both
quotient is not positive.
overflow
If ‘Sign’ =1, remainder’s sign is the same as that of 7-23
dividend. If the signs of dividend and divisor are
identical, the quotient is positive (< 2147483647,); if
different, the quotient is negative (> — 2147483647,,)
Dividend > divisor, If “‘Sign’=0 and quotient is overflow (> 4294967295,,),
quotient is overflow ‘Overflow’' = 1, and the quotient is set to
FFFFFFFFg.
If ‘Sign’ =1 and quotient is overflow (> 4294967295,, 5
or < — 2147483647,,), ‘Overflow = 1. If the
signs of the dividend and the divisor are identical,
the quotient is set to 7FFFFFFFg; if different, the
quotient is set to 8000000,.
Dividend < divisor The quotient is 0, and the remainder is same as the 5
dividend.
Divisor=0 ‘Overflow’ = 1. If ‘Sign' =0, the quotient is set to
FFFFFFFF.g.
‘Overflow'=1. If ‘Sign'=1 and the dividend is 3

positive, the quotient is set to 7FFFFFFF ;. If ‘Sign’ = 1
and the dividend is negative, the quotient is set to
8000000,.

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

4 Conclusions

In this work we present an improved design of a long 128b/
64b signed/unsigned integer divider and a physical 64b/
32b signed integer divider chip implementation. Not only
do we show the feasibility of using the radix-4/2 method,
but all the implementation problems mentioned in Section
1 are also resolved. The simulation results indicate that our
design is a better option than the existing long divider
designs. The testing results of the real chip additionally
verify the design methodology that we propose in this
study. Notably, this design can be integrated in the ALU
unit of a 64-bit microprocessor.

5 Acknowledgements

Our 64b/32b signed integer divider chip has been reviewed
and approved by Chip Implementation Center (CIC) of
National Science Council (NSC) of Taiwan to be fabricated
by Taiwan Semiconductor Manufacturing Company
(TSMC). The number of our chip is (CIC) T06-87C-09.
We thank CIC, NSC, and TSMC. This research was

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

partially supported by National Science Council under
grant NSC 88-2219-E-110-001

6 References

‘Pentium Pro Family Developer's Manual’ (Intel, RﬂdlnLl996)
GWENNAP, L: ‘Intel’s P6 usesdeoouplcd superscalar design, Micro-
processor mpon. 1995 9 (2) pp. L
?997 11, (2) 1 P6 S
3 P

HA, A.E., and IBEAHIM, MK.: “Two’s complement high
ndl.x d:lVl.ilOn 1997 International S ium on Circuits and Systems
(ISCAS’97), 1997 Hong Kong, gp 8-2091
5 ERCEGOVAC, M.D., and T.: ‘Division and square root: digit-
recurrence algomhms and implementations’ (Kluwer Academic Publish-

6 HWANG, K. * arithmetic: principles, architectures, and
designs’ (John Wm 1979)

7 ERCEGOVAC, M.D,, LANG, T., and MONTUSCHI, P: w
radix division with ptnmlm%andselecuonbywundmg , IEEE
1994, C-43, (6), pp.

8 f;;\;?NAGPL JF ‘Digital computer arithmetic’ (McGraw-Hill, Inc.,

9 IILAYEgséIP ‘Computer architecture and organization’ (McGraw-Hill,

., 1988)

10 SIRNIVAS, H.R., and PARHI, K.K.: ‘A fast radix-4 division algorithm’,
IEEE International Symposium on Computer Arithmetic, 1994, Santa
Monica, pp. 311-314

11 BATY, K.: ‘Design ware’ (Synopsys, Inc., Reading, 1996), pp. B-3
to B-12

B W N

115

