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Design of a Cycle-Efficient 64-b/32-b Integer Divisor
Using a Table-Sharing Algorithm

Chua-Chin Wang, Po-Ming Lee, Jun-Jie Wang, and Chenn-Jung Huang

Abstract—In new generations of microprocessors, the superscalar archi-
tecture is widely adopted to increase the number of instructions executed
in one cycle. The division instruction among all of the instructions needs
more cycles than the rest, e.g., addition and multiplication. It then makes
division instruction an important cycles-per-instruction figure for modern
microprocessors. In this paper, a radix-16/8/4/2 divisor is proposed, which
uses a variety of techniques, including operand scaling, table partitioning,
and, particularly, table sharing, to increase performance without the cost
of increasing complexity. A physical chip using the proposed method is im-
plemented by 0.35- m single poly four metal (1P4M) CMOS technology.
The testing measurement shows that the chip can execute signed 64-b/32-b
integer division between 3–13 cycles with a 80-MHz operating clock.

Index Terms—Integer division, mixed radixes, on-the-fly conversion,
operand scaling, table folding, table sharing.

I. INTRODUCTION

Integer division is a critical operation in CPU design since the
number of clock cycles to complete an integer division is probably
very long and unpredictable. The role of division is becoming more
and more critical owing to the requirement of signed computer
arithmetics, the modulus computation, the calculation of encryption
keys, and so on. Division algorithms can be roughly classified into two
categories, namely, digit-recurrence methods [1] and functional itera-
tion techniques [1], while the former is commonly used. Regarding the
digit-recurrence method, traditionally there are two types of division
schemes, i.e., restoring and nonrestoring schemes. However, they both
require multiple operation steps to derive a quotient bit. Not only is the
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efficiency drastically poor, but also a long adder/subtracter is needed
to execute the remainder bit adjustment.

In this paper, we employ a modified high-radix, i.e., radix-16/8/4/2,
digit-recurrence division method and on-the-fly conversion method to
reduce the required cycles for the 64-b/32-b signed integer division,
while keeping the hardware complexity in control.

II. HIGH-RADIX 64-b/32-b SIGNED INTEGERDIVISOR

A. Digit-Recurrence Theory

Assumex, d, q, andrem to be the dividend, divider, quotient, and
remainder in the division operation. We also denote the radix of the
division as beingr. The division is then defined asx = q � d + rem.
In the digit-recurrence division algorithm [2], 1–b bits of quotient digit
can be obtained every iteration in a radix-2b digit-recurrence division.
In other words,b bits of quotient can be obtained every iteration. In [3],
the digit-recurrence algorithm is defined as

w[j + 1] = r � w[j]� d � qj+1 (1)

wherew[j + 1] is the residual of the(j + 1)th iteration,r is the
radix, andqj+1 is the quotient digit generated in the(j + 1)th iter-
ation. In a radix-r, r = 2b, division, the quotient digit set is defined as
qj 2 Da = f�a; . . . ;�1; 0; 1; . . . ; ag. SincekDak > r, it uses more
thanr numbers to present the quotient digits, which make this quotient
representation form to be a redundant form. Besides, the restriction of
a is a � dr=2e. In (1), the quotient digits are generated in every it-
eration. Hence, we can define the quotient-digit selection function as
qj+1 = SEL(w[j]; d), where theSEL() function can be simplified as
a table lookup function.

Although the digit-recurrence algorithm has been well written in [2],
there are many unsolved difficulties when it comes to hardwaredly re-
alizing such a divisor, including the following.

1) A long adder is needed at the adjustment of the remainder.
2) Extra adjustment actions are required when the last cycle of the

division contains nonmultiple digits of the radix. (For instance,
the radix is 16, but there is only 1 b left in the dividend to be
processed.)

3) The adjustment of the remainder is missing when the signed di-
vision is executed.

4) A data flow control unit is required, which provides correct
timing control such that the results of the division can be
correctly placed on the output ports.

5) The size of the quotient selection table will grow exponentially
with the radix. Besides, it is likely that one radix needs one table.
These two factors lead to a huge chip area consumption if the
divisor is implemented on silicon.

In short, the above problems will occur during the realization of a
long signed divisor. If these problems are not resolved efficiently, the
hardware divisor will be large and slow.

B. Mixed Radix-16/8/4/2 64-b/32-b Integer Divisor

In [4], a mixed radix-8/4/2 integer divisor was proposed, of which
performance is better than that of a normal radix-4/2 integer divisor [5].
However, it paid the price of increasing the complexity of hardware,
and then nearly doubled the total area of the divisor owing to the sizes of
tables. In this study, despite that the radix will be raised up to 16 to retire
more bits of the quotient per cycle, the complexity of the hardware
will be retained to a similar degree by using several methods, including
operand prescaling, table partitioning, [6], and table folding.
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Fig. 1. Generation of scaled estimated residual^.

1) Operand Scaling:In high-radix divisors, the cycle time is gen-
erally determined by the quotient-digit selection operation, which is
basically a table lookup operation. The complexity of the quotient se-
lection function increases exponentially if the radix increases linearly.
Consequently, it results in a long table lookup time. Operand scaling is
a better alternative to avoid the long table lookup time.

The maximal overlap between quotient digits appears when the di-
vider is the maximum. That is, the maximal amount of overlap occurs
when a dividerd is normalized and it approaches to one. This obser-
vation leads to the concept of divider prescaling. In the first step of
the scaling method, the divisor is prescaled by a factorM so that the
scaled dividerz is 1 � � � z = M � d � 1 + �, where� and� are
chosen such that the scaling factorSi, i 2 f0; . . . ; 6g is identical in all
divider intervals and the quotient-digit selection is independent of the
divider. Besides, the value ofM should be chosen to minimize(�+�),
which produces the smallest achievable range ofz. In order to pre-
serve the value of the quotient, three alternative ways of performing the
scaling were proposed [2]. Operand scaling process produces a scaled
estimated residual̂y, which is generated as shown in Fig. 1. In Fig. 1,
the “estimated residual” is chosen from the first seven bits fromw[j]
in (1).

2) Table-Sharing Algorithm:The quotient-digit selection function
in the radix-8 division has been proven to be the bottleneck in each
iteration [4]. Hence, the radix-16/8/4/2 integer division will be infea-
sible unless a simplified quotient-digit selection function is developed.
A modified version of the table-partitioning algorithm [6], called “table
sharing,” is proposed to simplify the digit selection process. The table-
partition method in [6] arranged the entries in a nonmergable manner.
We simply reorder the rows to place the negative entries ofLo. on the
top half of the table and the positive ones on the bottom. Hence, the
modified table possesses a feature that is mergable for different radixes.
Moreover, the merge of a total of the radix-2, radix-4, radix-8, and the
radix-16 quotient selection tables reduces the number of the required
tables, which, in turn, reduces the area of the chip.

3) Quotient Digit Decomposition and Table Sharing:In the pro-
posed scheme, the maximally redundant quotient digit set is chosen for
radix-16 division and decomposed into four components as follows:

qj+1 = qh;h + qh;l + ql;h + ql;l; qh;h 2 f�8; 0; 8g;

qh;l 2 f�4; 0; 4g; ql;h 2 f�2; 0; 2g;

ql;l 2 f�1; 0; 1g (2)

whereqj+1 2 f�15;�14; . . . ; 0; . . . ; 14; 15g, andqh;h, qh;l, ql;h,
andql;l are tabulated as shown in Table I.

TABLE I
DECOMPOSITION OF FOR RADIX -16/8/4/2 DIVISOR

TABLE II
GENERATION OF AND FOR DIFFERENTRADICES

According to Table I, the selection intervals forqj+1 in
radix-16, radix-8, radix-4, and radix-2 divisions are included
and tabulated as indicated by the four braces, respectively.
Besides, Lo. and Hi. in Table I denote the lower and upper
bounds of the shifted estimated residual, respectively. Notably,
the bounds of the scaled shifted residualŷ are derived from
jw[j]j � (8288=8192) and the corresponding 2-b truncation error.
Namely,b�r � (8288=8192) � 2�2c � ŷ � br � (8288=8192)c.
Nevertheless, since the quotient-digit table is shared by different
radixes, the highest order digit will be incorrectly enabled if the value
of ŷ is close to the bounds, as illustrated in the first and last rows and
as indicated by the braces in Table I. Fortunately, this can be fixed
easily later at the quotient-digit assimilation stage whereqh;h, qh;l,
ql;h, andql;l re-compose the quotient digits.

4) Table Folding: By inspecting Table I, the entries of the top half
are identical to the opposite ones in the bottom half. It allows us to
simply implement only the positive half. Accordingly, the proposed
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Fig. 2. Architecture of the radix 16/8/4/2 64-b/32-b integer divisor.

scheme needs only six bits, besides the common sign bit, as the input
to the quotient-digit selection table, including five integer bits and one
fractional bit ofŷ in contrast to 11 bits required in the radix-8 division
presented [4]. Thus, a total of seven bits,ŷ = y5y4y3y2y1y0y�1 are
used to deriveqhh;h, qhh;l, q

h
l;h, qhl;l, q

l
h;h, qlh;l, q

l
l;h, andqll;l as follows:

q
h
h;h = q

h
h;l = q

h
l;h = q

h
l;l = y5

q
l
h;h = �y4y3 + �y4y2y1y0y�1 + y4�y3�y2�y1�y0�y�1

q
l
h;l = �y4y3y2 + �y4y2�y1 + �y4y2�y0 + �y4y2�y�1 + �y4�y2y1y0y�1

+ y4�y3�y2�y1�y0�y�1

q
l
l;h = �y4y1�y0 + �y4y1�y�1 + �y4y3y2y1 + �y4�y1y0�y�1

+ y4�y3�y2�y1�y0�y�1

q
l
l;l = �y4�y0y1 + �y4y0�y�1 + �y4y3y2y1y0y�1 + y4�y3�y2�y1�y0�y�1:

(3)

Notably, all four radixes can share the expressions given in (3)
without any changes. The scenario requiring many quotient selection

tables for different radixes appearing in the prior designs no longer
exists.

C. Quotient Digit Assimilation Unit

The quotient digit assimilation unit performs the assimilation of the
selectionsqlh;h,qlh;l, q

l
l;h, andqll;l into the single digitqj+1 = qh�4+ql,

whereqh is formed by assimilatingqlh;h andqlh;l, andql is created by
assimilatingqll;h andqll;l. Meanwhile, the assimilation unit can also be
shared by different radixes.qh andql are functions ofqhh;h, qhh;l, q

h
l;h,

qhl;l, q
l
h;h, qlh;l, q

l
l;h, andqll;l for radix-16–radix-2 divisions , as shown

in Table II.
The 38-bit carry-save adder (CSA) in Fig. 2 is fed with the shifted

residual�qhh � d,�qhl � d,�qlh � d,�qll � d, r�wc[j], andr�ws[j]
to generatewc[j + 1] andws[j + 1], whereqhh + qhl = qh and
qlh+qll = ql. Notably,qhh, qlh, qhl, andqll must be numbers of two’s
power. For instance, a pre-computation of3 �d can be decomposed into
3 � d = (20 +21)d in one pass through the CSA and saved in registers
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TABLE III
COMPARISON OFMIXED RADIX -4/2, MIXED RADIX -8/4/2, AOKI’S, AND PROPOSEDMIXED RADIX -16/8/4/2 DIVISOR

Fig. 3. Die photograph of the proposed integer divisor.

right after the dividerd is scaled in every operation cycle. Multipliers
will then not be required in our high-radix division implementations.

Note that the expressions ofql andqh for different radixes are iden-
tical, except for the cases that the higher order quotient digit is incor-
rectly set to one when the value ofŷ is close to the bounds, as illustrated
in the boundary rows of each radix in Table I. The complete scheme
for the mixed radix-16/8/4/2 64-b/32-b integer divisor is presented in
Fig. 2.

III. I MPLEMENTATION AND MEASUREMENT

The chip is implemented by synthesizable Verilog register transfer
level (RTL) code and synthesized by Synopsys. Taiwan Semicon-
ductor Manufacturing Company (TSMC) 0.35-�m 1P4M CMOS
technology is employed to carry out the design, while CADENCE
standard delay format (SDF) simulation tools are used to execute
both the pre- and post-layout simulations. The highest working clock
of this radix-16/8/4/2 64-b/32-b divisor is 80 MHz. Table III is the
comparison of mixed radix-4/2, mixed radix-8/4/2, Aoki’s high-radix
divider [8], and our design. Fig. 3 shows a die photograph of the
physical chip fabricated by TSMC. The area of the die is 2187� 2204
�m2. Fig. 4 is the measured results given by the HP 1660CP logic
analyzer. Hence, this outcome addresses that our proposed design is
silicon proven.

IV. CONCLUSION

In this paper, we have proposed a novel scheme to meliorate
the performance of integer division. The methods that we propose
include operand scaling, table folding, and table sharing to realize

Fig. 4. Chip testing: output waveforms given a 80-MHz clock.

the mixed radix-16/8/4/2 quotient selection tables. A physical chip is
implemented to prove our method on silicon. The results verify that
our design saves operating cycles at a obscure increase of gate count.
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