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Design of a Cycle-Efficient 64-b/32-b Integer Divisor
Using a Table-Sharing Algorithm wlj+ 1] =r-wlj]—d-gj11 (1)

Chua-Chin Wang, Po-Ming Lee, Jun-Jie Wang, and Chenn-Jung Hugfere /[ + 1] is the residual of thé; + 1)th iteration,r is the
radix, andg;+1 is the quotient digit generated in tki¢ + 1)th iter-

) . . ation. In aradix#, » = 2*, division, the quotient digit set is defined as
Abstract—In new generations of microprocessors, the superscalar archi-

tecture is widely adopted to increase the number of instructions executed % € Do ={~-a,....-10.1...., a} S'r?Ce”D“”_ >t uses_, more_
in one cycle. The division instruction among all of the instructions needs thanr numbers to present the quotient digits, which make this quotient

more cycles than the rest, e.g., addition and multiplication. It then makes representation form to be a redundant form. Besides, the restriction of
division instruction an important cycles-per-instruction figure for modern  ; is ¢ > [/2]. In (1), the quotient digits are generated in every it-

microprocessors. In this paper, a radix-16/8/4/2 divisor is proposed, which o o4 “Hence, we can define the quotient-digit selection function as
uses a variety of techniques, including operand scaling, table partitioning, ’ !

and, particularly, table sharing, to increase performance without the cost %;+1 = SEL(wlj], d); where theSEL() function can be simplified as
of increasing complexity. A physical chip using the proposed method is im- a table lookup function.
plemented by 0.35um single poly four metal (1P4M) CMOS technology.  Although the digit-recurrence algorithm has been well written in [2],

The testing measurement shows that the chip can execute signed 64-b/32-nere are many unsolved difficulties when it comes to hardwaredly re-
integer division between 3-13 cycles with a 80-MHz operating clock. . s . . .
alizing such a divisor, including the following.

Index Terms—integer division, mixed radixes, on-the-fly conversion, 1) A long adder is needed at the adjustment of the remainder.
operand scaling, table folding, table sharing. 2) Extra adjustment actions are required when the last cycle of the
division contains nonmultiple digits of the radix. (For instance,
|. INTRODUCTION the radix is 16, but there is only 1 b left in the dividend to be
processed.)

3) The adjustment of the remainder is missing when the signed di-
vision is executed.

4) A data flow control unit is required, which provides correct
timing control such that the results of the division can be
correctly placed on the output ports.

5) The size of the quotient selection table will grow exponentially
with the radix. Besides, itis likely that one radix needs one table.

Integer division is a critical operation in CPU design since the
number of clock cycles to complete an integer division is probably
very long and unpredictable. The role of division is becoming more
and more critical owing to the requirement of signed computer
arithmetics, the modulus computation, the calculation of encryption
keys, and so on. Division algorithms can be roughly classified into two
categories, namely, digit-recurrence methods [1] and functional itera-
t"_)r_‘ techniques [1], while the f_o_rmer is commonly used. Regard_ln_g_the These two factors lead to a huge chip area consumption if the
digit-recurrence method, traditionally there are two types of division divisor is implemented on silicon.
schemes, i.e., restoring and nonrestoring schemes. However, they both

require multiple operation steps to derive a quotient bit. Not only is theIn short, th? gbove problems will occur during the reah;qﬂon of a
long signed divisor. If these problems are not resolved efficiently, the

hardware divisor will be large and slow.
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TABLE |
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DECOMPOSITION OFg; 1 FORRADIX-16/8/4/2 DVISOR
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1) Operand Scaling:In high-radix divisors, the cycle time is gen- o8 3 3 o o 94 1

erally determined by the quotient-digit selection operation, which is 35 4 4 o 4 d o

basically a table lookup operation. The complexity of the quotient se- 45 5 5 4 0 1

lection function increases exponentially if the radix increases linearly. 59 6 6 0 4 2 0

Consequently, it results in a long table lookup time. Operand scaling is 65 7 7 0 4 2 1

a better alternative to avoid the long table lookup time. ;g g S S 8 B (1]

The maximal overlap between quotient digits appears when the di- 9:5 1 1 q 2 0

vider is the maximum. That is, the maximal amount of overlap occurs 105 111 11l ¢ 9d 1

when a dividerd is normalized and it approaches to one. This obser- 115 12 12 8 4 o 0

vation leads to the concept of divider prescaling. In the first step of 125 13 13 § 4 1

the scaling method, the divisor is prescaled by a fagioso that the 135 14 14 & 4 2 0

scaled dividez isl —a < z= M -d < 1+ 3, wherea andg are 149 16 13 § 4 2 1

chosen such that the scaling facfari € {0,...,6} isidentical in all

divider intervals and the quotient-digit selection is independent of the TABLE Il

divider. Besides, the value 8f should be chosen to minimize+3),

X . GENERATION OF q;, AND q; FOR DIFFERENTRADICES
which produces the smallest achievable range.dh order to pre-

serve the value of the quotient, three alternative ways of performing the . bit 2 . bit 0
. . radix bit 1
scaling were proposed [2]. Operand scaling process produces a scaled (MSB) (LSB)
estimated residudl, which is generated as shown in Fig. 1. In Fig. 1, 169" a, G dhy
the “estimated residual” is chosen from the first seven bits fraft a| 4y Gn ai
in (1) 8 qn qllfl qfl rt ‘12,1 (Ill h
2) Table-Sharing Algorithm:The quotient-digit selection function al ay a4, 0
in the radix-8 division has been proven to be the bottleneck in each 4l (11:! Ghon + G+ | Ghn T G T4
iteration [4]. Hence, the radix-16/8/4/2 integer division will be infea- il qt'il ; ; 0 , ; 0
sible unless a simplified quotient-digit selection function is developed. ol nl iy | Tnnt Ghy  Gin t Gy 0
A modified version of the table-partitioning algorithm [6], called “table @] G 0 0

sharing,” is proposed to simplify the digit selection process. The table-
partition method in [6] arranged the entries in a nonmergable manne

We simply reorder the rows to place the negative entridsoodn the radix-16, radix-8, radix-4, and radix-2 divisions are included

top half of the table and the positive ones on the bottom. Hence, thr?d tabulated indicated by the four br ; tivel
modified table possesses a feature that is mergablefordifferentradi%és. aoulated as cate y the fou aces, respectively.

o L o Sides, Lo. and Hi. in Table | denote the lower and upper
Moreover, the merge of a total of the radix-2, radix-4, radix-8, and ﬂ})%dmds of the shifted estimated residual, respectively. Notably,

radix-16 qgotlgnt selection tables reduces the ngmber of the reqw{ﬁe bounds of the scaled shifted residualare derived from
tables, which, in turn, reduces the area of the chip. . . .
. L " ) lwlf]] < (8288/8192) and the corresponding 2-b truncation error.
3) Quotient Digit Decomposition and Table Sharintn the pro- amely, [—r - (8288/8192) — 2=2| < § < |r - (8288/8192)]
posed scheme, the maximally redundant quotient digit set is chosenmor Yo L= =Y = U :

o L . Nevertheless, since the quotient-digit table is shared by different
radix-16 division and decomposed into four components as fO”OWS'radixes, the highest order digit will be incorrectly enabled if the value

of § is close to the bounds, as illustrated in the first and last rows and

r. . . . .
According to Table |, the selection intervals fafj4; in

Gt = arht qhitaon +an, an.h €{=8,0,8}; as indicated by the braces in Table I. Fortunately, this can be fixed
ani € {=4,0.4}; qun € {=2,0,2}; easily later at the quotient-digit assimilation stage where, g,
qu € {—1,0,1} (2) q,n, andg;; re-compose the quotient digits.
4) Table Folding: By inspecting Table |, the entries of the top half
whereg;1 € {-15,-14,...,0,...,14,15}, andgn.x, qn.1, qi,n, are identical to the opposite ones in the bottom half. It allows us to

andq;,; are tabulated as shown in Table I. simply implement only the positive half. Accordingly, the proposed
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Fig. 2. Architecture of the radix 16/8/4/2 64-b/32-b integer divisor.

scheme needs only six bits, besides the common sign bit, as the infbtes for different radixes appearing in the prior designs no longer
to the quotient-digit selection table, including five integer bits and orexists.
fractional bit ofy in contrast to 11 bits required in the radix-8 division

presented [4]. Thus, a total of seven biis= ysy4y3y2y1yoy—1 are
used to derivey;! ., qi. i, 4i'n. a1t dh, s hois 40,00 @Ndgy, as follows:

h _ h _  h _  h __
dh,h =4n,0 = 91,h = 91,1 = Y5

C. Quotient Digit Assimilation Unit

The quotient digit assimilation unit performs the assimilation of the
selectionsj, ,, k1, qi.», andg; ; into the single digit,;+1 = gn-4+q1,
whereg,, is formed by assimilatingfl,h andqf%,, andg; is created by
assimilatinmfyh andq,l,l. Meanwhile, the assimilation unit can also be
shared by different radixeg, andg; are functions of; ,, ¢i 1, ai's,

'ty dh ps Q.10 4ip, @ndg;  for radix-16—radix-2 divisions , as shown
in Table II.

The 38-bit carry-save adder (CSA) in Fig. 2 is fed with the shifted
residual—qhh . d, —qht d, —dqih " d, —qi - d, r X ’LUC[j], andr x LU&[J]
3) to generatavc[j + 1] andws[j + 1], wheregpr, + g1 = g5 and

qn +qu = qi. Notably,gnn, qin, ¢n1, andg; must be numbers of two'’s

Notably, all four radixes can share the expressions given in (Bdwer. Forinstance, a pre-computatior3efl can be decomposed into
without any changes. The scenario requiring many quotient selectidnd = (2° + 2')d in one pass through the CSA and saved in registers
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TABLE Il
COMPARISON OFMIXED RADIX-4/2, MIXED RADIX -8/4/2, AOKI'S, AND PROPOSEDMIXED RADIX -16/8/4/2 DVISOR
Mixed Radix- Mixed Radix- Aoki’s Ours
4/2 [5] 8/4/2 [4] (8]
CMOS Process 0.6 pm 0.6 pm 0.35 pm 0.35 pm
Chip Size 2.291 x 2.836 mm? 4.063 x 4.104 mm? 3.12 x 2.02 mm? 1.409 x 1.392 mm?
(with PADs) (with PADs) (core only) (core only)
Area by Synopsys 9984.75 17468.76 N/A 19996.42
Number of cycles 23-3 18-3 17 13-3
Clock rate 50 MHz 66 MHz 300 MHz (32 stages pipelined) 80 MHz

select output quotient | | select output remainder || end division operation
(wselect = 0) (wselect= 1) (start = 0)

S =

l‘:‘ 1409.7 um

[

read 32-bit remainder

|<— 2204 um —>|

division operation
from registers | | done (ok = 0)

Fig. 3. Die photograph of the proposed integer divisor.

Fig. 4. Chip testing: output waveforms given a 80-MHz clock.
right after the divider! is scaled in every operation cycle. Multipliers
will then not be required in our high-radix division implementations. ) ] ) ] ) o
Note that the expressions @fandg, for different radixes are iden- the mixed radix-16/8/4/2 quotient selection tables. A physical chip is
tical, except for the cases that the higher order quotient digit is incdfPlémented to prove our method on silicon. The results verify that
rectly set to one when the valuefs close to the bounds, as illustratedPUr design saves operating cycles at a obscure increase of gate count.

in the boundary rows of each radix in Table I. The complete scheme

for the mixed radix-16/8/4/2 64-b/32-b integer divisor is presented in
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IV. CONCLUSION
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