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74-dBc SFDR 71-MHz Four-Stage Pipeline ROM-Less DDFS Using
Factorized Second-Order Parabolic Equations

Chua-Chin Wang , Pang-Yen Lou, Tsung-Yi Tsai, and Hsiang-Yu Shih

Abstract— In this brief, a four-stage pipeline read only memory (ROM)-
less direct digital frequency synthesizer (DDFS) with equal division
interpolation is proposed. To attain higher spurious-free dynamic range
(SFDR) and faster clock rate, the hardware cost and delay using different
segments with various interpolation equations are analyzed systematically
to explore the optimal solution. The second-order parabolic equations
with proper coefficients and factorized operation orders based on
optimized hardware cost and delay are finally utilized to enhance SFDR.
The proposed design is demonstrated by the physical implementation
using the TSMC 0.18-µm CMOS technology cell library and on-silicon
measurements, where the maximum SFDR is 74 dBc, 0.018-mW/MHz
power dissipation, and the maximal clock frequency is 71.9 MHz.

Index Terms— Direct digital frequency synthesizer (DDFS), fre-
quency synthesizer, parabolic polynomial interpolation, pipeline
structure, spurious-free dynamic range (SFDR).

I. INTRODUCTION

Direct digital frequency synthesizer (DDFS) is well known to adopt
mathematical manipulations and directly synthesize the sinusoidal
output, where the implementation can be realized by either the
memory-based phase-to-sine mapping or an algorithm-based phase-
to-sine mapping (or called conversion). Since there is no need of any
feedback loop and voltage-controlled oscillator (VCO), DDFSs are
able to achieve fast frequency switching and the wide output range
more easily than the phase-locked loop (PLL)-based solutions.

Many studies have also reported read only memory (ROM)-less
DDFS designs (see [1]–[3]), where different algorithms were used
instead of ROM tables to realize the phase-to-sine mapper (PSM).
A typical solution was proposed by Sodagar and Lahihi [4] using
the second-order parabolic approximation. However, to reduce the
conversion error, a scaling table and an error correction table (or
generator) are needed. It not only deteriorates the speed but also
reduces the resolution of the output word length. In addition, any
polynomial whose order is higher than three was found impractical to
be implemented if considering the feasibility of hardware realization
[3]. Besides, the spurious-free dynamic range (SFDR) of sinusoidal
output will be limited. Recently, several ROM-less DDFSs [5]–[8]
have been developed to realize the PSM, i.e., the critical path of
DDFS. We proposed a pipeline solution in [9], which is a two-page
report to show the basic simulations without any theoretical analysis
or implementation. In short, these DDFSs based on the second-order
polynomials still cannot achieve high SFDR performance without
sacrificing the speed.

To increase SFDR and reduce power dissipation, the second-order
polynomial with equal division in a pipeline architecture is proposed
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and realized in this brief. Most important of all, different orders
of mathematical operators of the second-order polynomial are fully
analyzed to find out the optimal SFDR, output frequency, and power
consumption.

II. HIGH-SFDR DDFS DESIGN USING FACTORIZED

SECOND-ORDER PARABOLIC EQUATIONS

Apparently, the sine wave is governed by the equation f (x) =
sin(x). Theoretically, synthesizing a full sinusoidal wave (0 ∼ 2 · π)
can be achieved by synthesizing one quarter of the full cycle, namely
(0 ∼ (1/2) · π). DDFS means to take advantage of digital logic and
algorithms to generate a waveform close to the real sinusoidal wave.
Thus, the interpolation approach using the low-order polynomials
(or called equations) is widely adopted to speed up the sine wave
generation.

A. Analysis of Interpolation Schemes for DDFS

Three common interpolation schemes using low-order polynomials
are linear interpolation (first-order polynomials), quasi-linear inter-
polation (combination of first-order and second-order polynomials),
and parabolic interpolation (second-order polynomials) [10]. The
linear interpolation apparently has the edge of simplicity with poor
accuracy. By contrast, the parabolic interpolation is taking advantage
of the similarity between sin(x) and the parabolic function. However,
the price to pay is high computation complexity. As for the quasi-
linear interpolation, the synthesis of the sine wave close to the origin
is based on linear polynomials, and the synthesis of the region close to
(1/2)π is based on the parabolic polynomials. However, this scheme
needs more sophisticated logic control and region division. The
features of the mentioned three interpolation schemes are summarized
as follows.

1) Linear Interpolation: First-order equations are used to attain
lower complexity and high speed but result in the lowest SFDR
as well.

2) Quasi-Linear Interpolation: Utilizing the second-order equa-
tion to minimize the error caused by the first-order equations,
where the best partition of these two types of equations was
found at (π/8) [3], [8].

3) Parabolic Interpolation: Only the second-order equations are
used to approximate the entire sine wave, which has the better
SFDR and moderate complexity.

Notably, although more segments are utilized and synthesized,
which will result in higher accuracy, the design complexity will
increase, and the speed will be reduced. To explore the scenarios that
are given different interpolation approaches and different segmen-
tations, SFDR and error simulations by MATLAB are summarized
in Table I. The SFDR and maximum error results of parabolic
interpolation with eight segments are found to be better than those
of quasi-linear interpolation with 32 segments. Besides, if the design
complexity, area overhead, and switching speed are taken into con-
sideration, the parabolic interpolation with eight segments seems to
be a better option than others.
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TABLE I

PERFORMANCE GIVEN DIFFERENT SEGMENTATION AND INTERPOLATION

Fig. 1. SFDR of three interpolation methods by MATLAB simulations.

Fig. 2. Maximum error of three interpolation methods by MATLAB
simulations.

When it comes to the performance priority, SFDR is well recog-
nized to be more important than the maximum error and many others.
Therefore, all the SFDR entries in Table I are plotted in Fig. 1 to
highlight the difference among these selections. Similarly, the maxi-
mal errors are also shown in Fig. 2.

Referring to Table I, the parabolic interpolation method is appar-
ently better than the other two methods when it comes to the
consideration of SFDR. Notably, although 32-segment partition has
the minimal error distribution, 8-segment partition with over 100 dBc
SFDR is much more easy to be realized on silicon. Thus, the parabolic
interpolation with eight-segment partition is chosen to be realized in
this brief.

B. Operation Order and Selection of Parabolic Polynomials

As mentioned in Section II-A, the complexity can be reduced by
selecting proper second-order parabolic equations, provided that the
parabolic interpolation scheme is used. The most popular second-
order polynomials are as follows:

f1(x) = ax2 + bx + c (1)

f2(x) = ax2 + c (2)

f3(x) = a(x + b)2 + c (3)

TABLE II

DIFFERENT PARABOLIC EQUATION COMPARISONS

f4(x) = (ax + b)x + c. (4)

Equation (1) is the general form of the parabolic equation. The
other three equations are either simplified form or factorized form.
Apparently, the implementation of (1) needs at least one multiplier
and one squarer, where the squarer is basically a multiplier, besides
two adder/subtractors. Although the implementation is straightfor-
ward, the hardware complexity is very high. By the perspective
for SFDR, the missing coefficient “b” in (2) makes a single coef-
ficient, “a,” very hard to fit both curvature and the slope at the same
time, which is why it attains the worst SFDR. Although the hardware
complexity for (3) and (4) looks similar, the factorized (ax + b)x +c
has a very important advantage, which is that the truncation of ax
will reduce the word length of later operations. By contrast, (3) will
execute (x + b) first so that word length of later operations will be
longer.

To justify the theoretical analysis of the hardware complexity
versus SFDR, 32-bit frequency control word (FCW) input and a
24-bit resolution output DDFS designs using the above-mentioned
four parabolic equations are simulated by MATLAB, as tabulated
in Table II. As expected, (2) attains the least complexity. Equation (1)
is the most complicated one, because one more multiplexer is needed.
Equation (4) is proven to attain the advantage of hardware complexity.
Therefore, DDFS implemented using (4) is selected based on the
simulation outcome.

C. Parabolic Polynomial Interpolation Derivation

A quadrant of sinusoid is partitioned into i segments, where every
segment is approximated by the second-order parabolic equation, and
each segment has m sampling points, as shown in the following
equation:

yi j (xi j ) = (ai xi j + bi )xi j + ci , i = 1 ∼ 8, j = 1 ∼ m. (5)

According to the calculation method in [8], the least square method
is used to attain the coefficients, and we differentiate (5) to get the
following equation:

y�
i j (x) = 2ai xi j + bi , i = 1 ∼ 8, j = 1 ∼ m. (6)

Equation (6) can be re-organized into a matrix expression as
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y�
i1
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i3
...
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im
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which is used to derive the least squares approximate solutions
[ai , bi ] as shown in

⎡
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Certainly, (5) can also be reorganized, which is used to find the
least squares approximate solutions of [ci ], as shown in the following
equation:

[
1
ci

]
=

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
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D. Stage of Pipelining

Pipelining is a well-known method to enhance clock rate
and throughput. However, how many stages of pipelining are
needed in the eight-segment DDFS design using the second-
order parabolic polynomial, namely (5), is the next issue to be
resolved.

1) Two Stages: This is the simplest pipelining structure, where one
register is used after the 32-bit FCW counting, and the other
is added before the generation of the 24-bit output. The clock
rate is 62 MHz.

2) Three Stages: The multiplier is certainly the critical path of the
entire data flow. An extra register stage is then added before
the multiplier such that the clock rate is increased to 83 MHz
at the expense of 7% hardware cost.

3) Four Stages: To further increase the clock rate, another register
is proposed to be added after the multiplier. The clock rate is
raised up to 100 MHz, which is 61% higher than that of the
two-stage structure. However, the hardware cost is increased
by 12% thereof.

Although higher order of pipelining is feasible, the increase of
clock rate becomes very obscure and the hardware cost turns into
quite significant. Therefore, a four-stage pipeline structure is consid-
ered as the optimal solution to carry out the DDFS design, as shown
in Fig. 3.

Notably, the first two most significant bit (MSB) of phase accu-
mulator output are used as the control bits to generate all the four
quarters of a full sine wave, where MSB1 is for the up and down
of the sinusoidal outputs, and MSB2 is for the left and right of the
sinusoidal outputs. Because the proposed design is realized by an

Fig. 3. Block diagram of the proposed DDFS.

Fig. 4. Die photograph of the proposed DDFS.

Fig. 5. Functional test.

Fig. 6. Current measurement.

equal eight-segment partition, MSB3, MSB4, and MSB5 are used
to control the coefficients ai , bi , and ci , respectively. For example,
when (MSB3, MSB4, MSB5) is (0,0,0), the coefficients a1, b1, and
c1 are selected. If (MSB3, MSB4, MSB5) is (0, 1, 0), a3, b3, and c3
are selected.

III. IMPLEMENTATION AND MEASUREMENT

This brief is realized using the TSMC 0.18-μm mixed-signal
CMOS process cell library. The core area is only 0.222×0.222 mm2,
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TABLE III

PERFORMANCE COMPARISON OF DDFS

Fig. 7. SFDR measurement.

Fig. 8. Shmoo plot.

and the overall chip size is 1.112 × 1.112 mm2. The die photograph
is shown in Fig. 4.

The prototype chip of the proposed DDFS is tested by
ADVANTEST V93000 PS1600 provided by Taiwan Semiconductor
Research Institute (TSRI), Taiwan. The testing procedure consists
of continuity check, standby current measurement, functional test,

Fig. 9. Roadmap of the ROM-less DDFS designs.

operation current measurement, and shmoo plot. Fig. 5 shows a
snapshot of functional test. The highest clock rate is 71.9 MHz at
1.8-V system voltage. The power is found as shown in Fig. 6, where
the core current is 735.05 μA, and the PAD current is 10589.914 μA.
This concludes that the power of the proposed DDFS is 1.8 V ×
735.05 μA = 1.3231 mW at 71.9 MHz.

As for the most important measure of DDFS, the SFDR mea-
surement is shown in Fig. 7, where 74 dBc is verified. Fig. 8
shows the shmoo plot, where the clock rate is 71.9 MHz at
1.8-V VDD.

Table III shows the performance comparison with prior ROM-less
DDFS designs. Not only our design attains the highest SFDR but
also has the second best FOM. Although [12] has the best FOM, it is
only based on the simulations. Besides, the SFDR of [12] is only
49.1 dBc. Our major impact is the low power and low complexity
contributed by the factorized operation of the parabolic polynomial,
as shown by the roadmap in Fig. 9.

IV. CONCLUSION

This brief demonstrated a pipeline ROM-less DDFS with optimally
selected segments and factorized second-order parabolic interpolation
equations. By physical measurement on silicon, this brief attained the
significant SFDR 74 (dBc) and achieved the second best FOM, given
FCW (32 bits) and output resolution (24 bits).
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