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Abstract— Underwater image processing has been shown to
exhibit significant potential for exploring underwater environ-
ments. It has been applied to a wide variety of fields, such as
underwater terrain scanning and autonomous underwater vehi-
cles (AUVs)-driven applications, such as image-based underwater
object detection. However, underwater images often suffer from
degeneration due to attenuation, color distortion, and noise from
artificial lighting sources as well as the effects of possibly low-
end optical imaging devices. Thus, object detection performance
would be degraded accordingly. To tackle this problem, in this
article, a lightweight deep underwater object detection network
is proposed. The key is to present a deep model for jointly
learning color conversion and object detection for underwater
images. The image color conversion module aims at transforming
color images to the corresponding grayscale images to solve the
problem of underwater color absorption to enhance the object
detection performance with lower computational complexity.
The presented experimental results with our implementation
on the Raspberry pi platform have justified the effectiveness
of the proposed lightweight jointly learning model for underwater
object detection compared with the state-of-the-art approaches.

Index Terms— Convolutional neural networks, deep learning,
lightweight deep model, underwater image processing, underwa-
ter object detection.
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I. INTRODUCTION

HE exploration of underwater environment has been

popular recently based on the growing deficiency of
natural resources and the development of global economy.
In addition, several ocean engineering-related applications and
studies have increasingly relied on underwater images captured
by autonomous underwater vehicles (AUVs) [1]. However,
acquiring underwater images based on optical imaging devices
encounters more challenges than that in the atmosphere. More
specifically, underwater images often suffer from degeneration
due to attenuation, color distortion, and noise from artificial
lighting sources, as well as the effects possibly induced
by low-end optical imaging devices, that is, the scattering
and absorption attenuate the direct transmission, resulting in
surrounding scattered light. As a result, the attenuated direct
transmission reduces the scene intensity and induces color
distortion, while the surrounding scattered light distorts the
scene appearance. Such degenerations seriously affect the
related tasks in exploration of underwater environments, such
as underwater object detection and recognition. Some research
works have been presented in the literature for underwater
image restoration or enhancement (see [2]-[9]). More specifi-
cally, in [3], underwater image enhancement was formulated as
a haze removal problem and a dehazing method with minimum
information loss and histogram distribution prior was pre-
sented. Moreover, for better representing underwater images,
a revised underwater image formation model was proposed
in [7]. This model used the oceanographic measurements to
derive the physically valid space of backscatter, which would
be beneficial to better correct complex underwater scenes.
Furthermore, a color recovery method for underwater images
based on the image formation model [7] using RGB-D images
was presented in [8] and [9]. However, this article focuses
on object detection from a single underwater image without
needing to restore image quality in advance.

On the other hand, several underwater applications are asso-
ciated with devices (e.g., cameras) equipped on an AUV [10].
However, for a battery-powered AUV, it is critical to embed
low-complexity or low-power implementations of algorithms
into it for performing related tasks (e.g., image acquisition
or object detection/recognition) [11], that is, it would be
beneficial to design a low-complexity model for the desired
task performed underwater while maximizing the overall
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system efficiency among the AUV lifetime and the task per-
formance [12]. To achieve effective underwater image-based
object detection with low-complexity computation, this article
focuses on designing a lightweight deep model for object
detection. It is expected that the proposed deep model would
be suitable to be embedded into an AUV for several vision-
based underwater applications.

A. Object Detection Based on Deep Learning

Object detection, as one of the most fundamental and
challenging problems in the computer vision community, has
received much attention in recent years [13]. Some classic
object detection frameworks based on handcrafted feature
engineering include Viola—Jones detector [14], histograms of
oriented gradients (HoG) [15], and deformable part-based
model (DPM) [16]. Moreover, a multiview-based parameter-
free framework (MPF) was recently proposed to detect coher-
ent groups for crowd behavior analysis in [17].

With the rapid development of deep learning tech-
niques with great success in numerous perceptual tasks,
see [18]-[21], several deep learning-based object detection
frameworks [22]-[36] have been presented with better detec-
tion performance, compared with the state-of-the-art hand-
crafted feature-based methods (see [14]-[16]). Some of the
deep learning-based object detectors include R-CNN [24],
SPPNet [25], fast R-CNN [26], faster R-CNN [27], robust
faster R-CNN [28], YOLO [29]-[32], SSD [33], feature
pyramid networks (FPNs) [34], VSSA-NET [35], and Retina
Net [36]. The core of the deep model-based object detection
frameworks is the convolutional neural network (CNN), which
automatically performs feature learning (or representation
learning), incorporated with classification or regression task.
To focus on underwater object detection relying on the deep
learning techniques, some related research works were also
presented recently, briefly introduced in Section I-B.

B. Underwater Object Detection Based on Deep Learning

Vision-based underwater object detection studies have been
popular in [37]-[41] for the applications of exploring underwa-
ter resources and ocean environments. Similarly, with the rapid
development of deep learning techniques, some deep learning-
based underwater object detection techniques [42]-[51] have
also been presented recently. For example, a fast R-CNN-
based method was proposed in [44], aiming at the detection
and recognition of fish species from underwater images.
In addition, in [46], the deep residual network (ResNet)
model [52] was used for classifying underwater images of
plankton objects. Moreover, a lightweight deep neural network
was presented in [47] for fish detection by using some building
blocks, including concatenated ReLLU [53], inception [54], and
HyperNet [55]. Furthermore, a single-shot feature aggregation
network for underwater object detection was proposed in [49]
by introducing multiscale features and complementary context
information. On the other hand, an underwater data set with
annotated image sequences of fish, crabs, and starfish captured
in brackish water with varying visibility was presented in [51].
The YOLOV2 [30] and YOLOV3 [31] deep models were fine-
tuned and tested on the Brackish data set [51].
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Fig. 1. Samples of underwater objects mainly considered to be detected in
this article. (a) Fishes, (b) debris, and (c) diver (extracted from the underwater
videos from [59]).

C. Major Contributions and Novelties of the Proposed
Lightweight Deep Underwater Object
Detection Network

In this article, a novel lightweight deep neural network
model for underwater object detection is proposed. The major
novelties and contributions of this article are threefold.

1) For the applications of battery-powered AUVs, this
article presents a lightweight deep model for underwa-
ter object detection. Relying on our multiscale feature
learning network, the proposed deep network has shown
to be lightweight without significantly sacrificing object
detection accuracy implemented on the Raspberry pi
platform.

2) Different from the state-of-the-art underwater object
detection frameworks, this article presents to jointly
learn the process for image color conversion and object
detection to solve the problem of underwater color
distortion and scattering effects for improving detection
performance.

3) Based on the fact that training samples for underwater
images are hard to collect, this article proposes to
generate training underwater images for well training
the proposed deep object detection model.

The rest of this article is organized as follows. Section II
presents the proposed method for generating training samples
of underwater images for object detection deep model learning.
In Section III, the proposed lightweight deep underwater
object detection network is addressed. Section IV demon-
strates the experimental results. Finally, Section V provides
the conclusion.

II. GENERATION OF TRAINING SAMPLES
FOR UNDERWATER IMAGES
Based on the fact that it is not easy to find a suitable
data set of underwater images [56]-[58], especially for the
objects of fishes, debris, and divers (shown in Fig. 1), this
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Underwater image Image Chooser | Scale Modifier | Color Transfer

Image Adjuster Annotation Creator

Fish1 - X, Yy, Wy, Hy

Fish2 - X;, Yz, Wy, Hy

Fig. 2. (a) Proposed generation process for generating underwater training
images with objects included for our object detection model learning. (b) Some
generated underwater images based on the proposed generation process.

article proposes to generate the related sample images for our
deep model learning. However, to evaluate the performance of
the proposed method by comparing the state-of-the-art meth-
ods, more sample images (usually extracted from underwater
videos) used in the literature are also included, as addressed
in Section IV. A similar issue has also been mentioned in
recent studies on underwater object detection or tracking
(see [56]-[58]) that no such benchmark or data set exists so
far for underwater object detection/tracking. Although some
related data sets have been presented recently, the focuses of
these data sets and our goal are different. For example, the data
set presented in [56] is mainly collected for underwater object
tracking for moving objects, while we also consider static
objects (e.g., debris). In addition, the data set provided in [57]
consists of the three categories of seacucumber, seaurchin, and
scallop. The data set [57] is mainly collected for underwa-
ter robot picking, while we consider more diverse objects.
Moreover, the data set proposed by Chen et al. [58] is mainly
used for underwater image enhancement and evaluation of the
enhancement performance based on object detection before
and after enhancing images. The categories of objects in this
data set were not clearly addressed in [58], and therefore,
the data set cannot fit our purpose. Therefore, it is needed
to create our own data set for underwater object detection.

Inspired by the idea that patches are cut and pasted among
training images presented in [60], our training sample genera-
tion method for underwater image object detection is described
as follows. As shown in Fig. 2(a), we collected several
underwater images from the Internet to form the backgrounds
of the images to be generated. The Image Chooser module
randomly and manually picks out the objects of fishes, debris,
or divers from the annotated image set [61] to be the object
components (or foregrounds) for being embedded onto the
background underwater images. To consider various scales
of objects, the Scale Modifier module aims at modifying
the scales and aspect ratios to form different versions (with
different sizes) for each object.
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Moreover, inspired by Jeong et al. [62], to naturally
fuse the objects into the underwater background images,
the color transfer module first transforms all of the object
and background images from the RGB (red, green, and blue)
color space to the HSI (hue, saturation, and intensity) color
space [63]. Then, the hue values of the object images are
adjusted to be similar to those of their targeting underwater
background images, shown as follows. For an object image O
to be fused into an underwater background image B, we just
assign the average hue value (J{p) of the hue values for all
the pixels of B to the hue value of each ith pixel (C}Cio) of O,
i.e., we set J—Cio = Hp for all i. The saturation and intensity
values of O are kept unchanged. As a result, the object
images can be fused with the background images. In addition,
the Image Adjuster module is used to randomly adjust the
locations in the background image for the objects (possibly
rotated with some angles) to be pasted. Finally, the Annotation
Creator is used to annotate each fused image with attached
information, including the coordinates (X; and Y;) of the
center point, the width (W;), and the height (H;) of each
object i. Fig. 2(b) shows some generated underwater images
obtained by the proposed generation process [see Fig. 2(a)]
for our deep model learning.

In the proposed underwater training sample generation
framework, each of the extracted objects is placed in the
randomly selected position of the corresponding background
image. Based on the fact that each underwater object can
be viewed as a floater, it is reasonable to randomly place
them in an underwater background image. In particular, several
selected background images include coral reefs or seabeds.
With randomly placed objects on them, it would be helpful
to simulate complex underwater scenes. In addition, the main
goal of the proposed training sample generation framework
is to augment training samples for object detection based
on YOLO-like object detectors, that is, the detection process
relies on using a bounding box to describe each target object
location. Even though the target box background of a placed
object in a generated image does not blend well with the
background image, the generated image with bounding box-
bounded target object(s) still fit our training process for object
detection. Moreover, based on our experiments (described in
Section IV), the proposed data augmentation process indeed
benefits the final detection results.

III. PROPOSED LIGHTWEIGHT DEEP UNDERWATER
OBJECT DETECTION NETWORK

As shown in Fig. 3, the proposed lightweight deep neural
network for underwater object detection mainly consists of the
image color conversion network and the underwater object
detection network. The main motivation and guideline for
designing the network architecture of the proposed framework
is addressed as follows. Since underwater images usually
suffer from color distortion, the proposed color conversion
network module is specifically designed to correct the color
information of underwater images for better object detection.
Moreover, the proposed object detection network mainly fol-
lows the general architecture of the FPNs presented in [34].
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Fig. 3. Proposed lightweight deep neural network for underwater object detection, where the left and right parts are the color conversion network and the
underwater object detection network, respectively. For each layer, [W, H, C] means the size, including the width (W), the height (H), and the number of
channels (C), of the output feature map from this layer. In addition, Conv, Max-pool, K, S, and P mean the convolution operation, the max-pooling operation,
the kernel size, the stride size, and the padding size, respectively.

FPN has been shown to be a generic solution for building by integrating the idea of FPN for multiscale prediction to
feature pyramids inside any deep CNNs for object detection. form our object detection network. In addition, to embed
To meet the two requirements that the proposed architec- underwater image characteristics into our method, we jointly
ture should be lightweight for the application of AUVs learn the proposed color conversion network and the pro-
and the considered underwater scenario may include several posed object detection network for adjusting the color infor-
small objects, we adopted our lightweight implementation mation of underwater images while achieving better object
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detection performance. The two network modules shall be
elaborated in Sections III-A and III-B.

A. Color Conversion Network Module in the
Proposed Deep Model

The proposed image color conversion network aims at trans-
forming an input color image to the corresponding grayscale
image. We have shown that this conversion is beneficial to
solve the problem of underwater color absorption to enhance
the object detection performance with lower computational
complexity.

As shown in the left part of Fig. 3, the image color
conversion network takes an RGB underwater image as input
and outputs the three parameters for color conversion. The
three parameters (p,, pp, and p,) are used to transform
the input RGB to its corresponding grayscale gy, Which is
expressed by

Pa pPp

Igny = ————— X Ig + ———
T patpstpy Pa+ Pp+ Py
Py

Poa + DPp+ Dy
where Iy, I, and I, denote the red, green, and blue channels
of the input, respectively, and the three parameters p,, pg, and
Dy, are learned by the proposed color conversion network.

More specifically, the proposed color conversion network
is composed of ten lightweight convolution layers. The first
five convolution layers aim at extracting features from the
input image. The following convolution layers are designed
based on the idea of the MobileNets relying on the depth-
wise separable convolutions presented in [64]. The MobileNet
model [64] relies on the depth-wise separable convolutions that
factorize a standard convolution into a depth-wise convolution
and a 1 x 1 convolution called a point-wise convolution. This
factorization drastically reduces the computation complexity
and the model size. The depth-wise convolution applies a
single filter per each input channel, whereas the point-wise
convolution uses a filter of kernel in size of 1 x 1 to
nonlinearly combine the outputs of the depth-wise convolution.
However, in our color conversion deep network, different
from [64], the depth-wise separable convolution used here first
applies a point-wise convolution of kernel in size of 1 x 1 to
reduce the dimension of the output from the previous layer.
Then, by applying a depth-wise convolution of kernel in size
of 3 x 3, the feature extraction is performed for generating
the transformation parameter of each color channel.

The depth-wise separable convolution layers are then fol-
lowed by a max-pooling layer and a channel combination layer
to produce the transformed grayscale image. The main goal
for applying a max-pooling layer in the end of the proposed
color conversion CNN module is to avoid possible noises in
the feature learning process. In this layer, the kernel size and
the stride size are set to 10 x 10 and 1, respectively. The
max-pooling layer is useful for stabilizing the color conversion
results. The channel combination layer is designed to perform
the color transformation defined by (1). Then, as shown
in Fig. 3, the “Channel duplication and concatenation” block
duplicates the channel of the transformed grayscale image

XIG

x1Ig (1)
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three times and concatenates them to form the output grayscale
image of three channels. The grayscale image transformed
from the input image is then fed into the object detection
network module described in Section III-B.

To train the proposed color conversion network, the three
different loss functions were adopted described as follows.
Please note that the proposed color conversion network and
the proposed object detection network (described later) are
jointly trained. Based on the fact that no ground truth grayscale
images are available for color images, the loss functions used
here rely on the self-correlation of a generated grayscale
image and the preservations of image feature and style for the
generated grayscale image, compared with its color version.
More specifically, to encourage the spatial smoothness in the
generated image, the total variation (TV) loss function [65] is
employed, which is defined by

Liv() = Z\/(ﬁm,;‘ =5.) + G —9)” @
i

where §; ; denotes the value of the pixel at the location (i, j)
in the generated grayscale image .

Moreover, inspired by Johnson et al. [66], two perceptual
loss functions are also employed. The first one is the feature
reconstruction loss, which is defined by

Leature (¥, §) = l(y) — #()II3 3)

CxHxW
where y and §, respectively, denote the input color image
and the generated grayscale image, where both of them are
in size of C x H x W. C, H, and W represent the number of
channels, the height, and the width of an image, respectively.
For a generated grayscale image, the number of channels
is also set to 3 by stacking the grayscale channel three
times to be consistence with that of the input color image.
¢(y) denotes a feature extractor for extracting the feature
representation from the image y. Based on the suggestion
mentioned in [66], the function ¢ is realized by the 16-layer
VGG network [67] pretrained on the ImageNet data set [68].
The feature extractor ¢ is mainly used for image feature
extraction included in the loss function [described in (5)] for
training the proposed color conversion network. Based on the
diversity of the ImageNet [68] for pretraining VGG-16 [67],
used as the backbone of ¢ and our experiments (described in
Section IV), the selection of ¢ is effective enough for jointly
learning our deep model.

The second perceptual loss function used here is the style
reconstruction loss based on the Gram matrix defined in [69],
which is expressed by

Laye (v, ) = IG(y) — GO)I7 “4)

where y and §, respectively, denote the input color image
and the generated grayscale image, G(y) is the Gram matrix
of y, and ||~||2F represents the squared Frobenius norm. The
Gram matrix has been shown to provide an efficient style
representation for an image in [66]. As a result, the final loss
function for training the proposed color conversion network is
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Fig. 4. Feature extraction CNN modules in the proposed feature extraction
network (the “Feature extraction part” in Fig. 3). For each layer, [W, H, C]
means the size, including the width (W), the height (H), and the number
of channels (C), of the output feature map from this layer. In addition,
Conv, Max-pool, K, and S mean the convolution operation, the max-pooling
operation, the kernel size, and the stride size, respectively. (a) Feature
extraction CNN module used at Stage-1 of the “Feature extraction part”
in Fig. 3. (b) Feature extraction CNN module used at the other stages of
the “Feature extraction part” in Fig. 3. In this figure, different colors are used
to represent convolution blocks of different kernel sizes, where deep blue and
light blue, respectively, denote the kernel sizes of 3 x 3 and 1 x 1.

defined as

LColor_Conversion O, 9) = ArvxLrv ()
+ Afeature X Lreature (¥, )
+ jvstyle X Lstyle (y, 5\]) (5)

where A1y, Afeature, and Agyle are the weighting coefficients for
the TV, feature reconstruction loss, and style reconstruction
loss, respectively.

B. Object Detection Network Module in the
Proposed Deep Model

In the proposed deep model, the object detection network
module consists of the two submodules, named by the feature
extraction network module and the feature aggregation net-
work module, respectively. The two modules are addressed as
follows.

1) Feature Extraction Network Module: The proposed fea-
ture extraction network module is designed to perform feature
extraction from the output image of the color conversion
network module for achieving object detection. As shown in
the right of Fig. 3, the feature extraction network module
is composed of the cascading of the feature extraction CNN
modules (denoted by the “Feature extraction Conv” in Fig. 3),
the receptive modules, and the convolution layers, elaborated
as follows.

As shown in Fig. 4, the feature extraction CNN module
consists of an input layer, followed by a max-pooling layer,
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Expand Layer
[W,H,2C]

[W,H,C]

| concatenate
Fout

shortcut connection

Fig. 5. Receptive module in the proposed feature extraction network module.
For each layer, [W, H, C] means the size, including the width (W), the
height (H'), and the number of channels (C), of the output feature map from
this layer. In addition, Conv and Max-pool mean the convolution operation
and the max-pooling operation, respectively. Moreover, x and R(x) denote
the input feature map and the output of the Squeeze layer for x, respectively.
Finally, Foy = x @ R(x), where @ denotes the concatenation operation.

three convolution layers, and an output layer. The feature
extraction CNN module is mainly used to extract initial
features with halving the spatial size of the input feature
map. To significantly reduce the computational burden of the
convolutional operations, only a few feature maps are used
in our feature extraction CNN module. Moreover, as shown
in Fig. 4, the feature extraction CNN module of the first stage
adopts the 1 x 1 convolution operation with kernel in size of
1 x 1 x 32 to double the channel size. The main goal is to
increase the feature maps in the initial stage for the succeeding
feature extraction process. On the other hand, for each feature
extraction CNN module used in the following stages, the
1 x 1 convolution operation is used to halve the channel size
to decrease the feature sizes and reduce the computational
complexity. For example, the 1 x 1 convolution layer of
the second stage adopts the convolution operation with kernel
in size of 1 x 1 x 64 to halve the feature channels obtained
from the previous layer. To compensate for the possible prob-
lem of insufficiently extracted features, the receptive module
is proposed to further refine the features from the previous
feature extraction CNN module. The receptive module is used
to efficiently extract multiscale features for the input feature
map. The main goal is to keep the feature representational
power in low computational complexity, detailed as follows.
As shown in Fig. 5, the proposed receptive module consists of
an expand layer, a squeeze layer, and a shortcut connection.
The expand layer is based on the inception v3 architecture pre-
sented in [70]. The main idea of the inception v3 module is to
expand the network scale relying on the added computation as
efficiently as possible by suitably factorized convolutions, that
is, spatial aggregation can be achieved over lower dimensional
embeddings without significant loss in representational power.
For example, in Fig. 5, the cascaded two 3 x 3 convolution
operations are originally performed by a 5 x 5 convolution
operation in the previous inception module [54]. It has been
shown that such technique of factorization into smaller con-
volutions would be efficient to the reduction of computational
complexity, that is, in our expand layer, we mainly borrowed
the idea of factorization of convolution operations from the
inception v3 [70]. The architecture of our expand layer is
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different from and simpler than that of the inception v3 (with
more convolution layers of larger kernel sizes). In addition,
expanding the network with multiscale processing is beneficial
for extracting multiscale features, which would be useful
for the detection of larger or smaller objects in an image.
The expand layer is followed by a squeeze layer, which just
performs one 1 x 1 convolution operation for decreasing the
number of feature channels, inspired by landola et al. [71].
On the other hand, to preserve the input feature map of a
receptive module and avoid the vanishing gradient problem,
a shortcut connection is used to directly transmit the input to
be concatenated with the output of the squeeze layer to form
the output of the receptive module. Using the concatenation
operation to form the output, instead of the element-wise
addition used in ResNet [52], is mainly inspired by densely
connected convolutional networks (DenseNets) [72], which
has been shown to outperform ResNet in feature preserva-
tion. The output of the receptive module is then fed into a
convolution operation with kernel in size of 3 x 3 and stride
size of 1.

In the feature extraction network module, there are five
cascaded stages. Each of the first four stages is composed of a
feature extraction CNN, a receptive module, and a convolution
layer. The fifth stage consists of only one feature extraction
CNN. The outputs of the latter three stages will be fed into
the feature aggregation network module, described as follows.

2) Feature Aggregation Network Module: The feature
aggregation network module is designed based on the idea
of the FPN architecture presented in [34] for connecting our
feature extraction network module. The main idea of FPN is
to use the inherently multiscale pyramidal hierarchy of deep
CNN to establish feature pyramids with insignificant extra
cost. The key property is to develop a top-down architecture
with lateral connections for extracting high-level semantic
feature maps at all scales. As shown in Fig. 3, in our feature
aggregation network module, there are three connection points
connected with our feature extraction network (of a top-down
architecture). The feature aggregation network module is
designed as a bottom-up architecture, consisting of two lateral
connection blocks (as shown in Fig. 6) and several convolution
layers. The lateral connection block is designed for merging
the feature maps of the same spatial resolution from the
bottom-up path (the feature aggregation network module) and
the top-down path (the feature extraction network module).

As shown in Fig. 6, the lateral connection block consists of
an unsampling layer, a concatenation layer for concatenating
the upscaled feature map and the feature map from the feature
extraction network module, and a convolution layer. In our
implementation, the third, fourth, and fifth stages of the feature
extraction network module will output the feature maps to the
feature aggregation network module. The feature aggregation
network will finally produce the three outputs at different
levels for object detections of different scales, that is, based
on the learned feature pyramid, the object predictions can be
made independently at all levels.

3) Loss Function for Object Detection: The size of the out-
put at each scale (total three scales) in our feature aggregation
network module is denoted by Sx Sx[(5 + N¢) x Ng]. In this
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Fig. 6. Lateral connection block in the proposed feature aggregation network
module. For each layer, [W, H, C] means the size, including the width (W),
the height (H), and the number of channels (C), of the output feature map
from this layer. In addition, Conv denotes the convolution operation.

expression, S x S denotes the spatial size of the output feature
map (or the number of grid cells used in YOLOV3 [31]), N¢
denotes the number of considered underwater object classes,
and Np denotes the number of evaluated bounding boxes
in each grid. In our experiments, N¢ is set to 3 for the
three object categories to be detected, and Np is set to
3 based on YOLOv3 [31]. The term “5” denotes the four
values of bounding box offsets and 1 score value of object
confidence [31].

To train the proposed object detection network, the loss
function used in YOLOv3 [31] is directly used, denoted
by Lgetection- The loss function is designed subject to the
four losses: 1) the loss of the four values of bounding box
offsets: the MSE (mean squared error) for the coordinates of
the center point, the width, and the height of each bounding
box and the corresponding ground truths; 2) the loss of object
confidence score of a bounding box; 3) the loss of nonobject
confidence score of a bounding box; and 4) the loss of
multiclass predictions of a bounding box. The latter three
items are calculated by the binary cross-entropy loss, instead
of the MSE. The loss function Lgeection can be mathematically
expressed by

Ldetection
s B )
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TABLE I
COLLECTED UNDERWATER IMAGE DATA SET USED FOR DEEP MODEL TRAINING, VALIDATION, AND TESTING IN THIS ARTICLE

Object Types Source Datasets Number of Images

Fishes LifeCLEF 2014 (videos) [61] 5,200

Underwater debris Deep-sea Debris Database (videos) [73] 1,000
Divers CADDY Underwater Stereo-Vision Dataset (images) [74] 600

ImageNet (images) [68] 1,600

Fishes / Underwater debris / Divers Dataset generated _b)_/ the pr0p0§ed Vgeneration process (images, 4,000

only for model training and validation, not for testing)
Total number of images 12,400
Training / validation 8,000 /2,000
Testing 2,400

where Acoora denotes the parameter controlling the weight of
the coordinate loss of the bounding box, $? is the number of
grid cells, B is the number of bounding boxes, 1?;” denotes
that the object is detected by the jth bounding box in the ith
cell, (x;,y;) and (X;, y;) are the ground truth of the center
point and the predicted one, respectively, w; and h; and ;
and h; are the ground truths of the width and the height
of the bounding box and the correspondingly predicted ones,
respectively, BCE denotes the binary cross-entropy function,
expressed by BCE(c;, ¢;) = —c;log(é) + (1 — ¢;)log(1 — &),
¢; and ¢; are the confidence score of the object included in the
ith cell and the correspondingly predicted one, respectively,
Znoobj denotes the parameter controlling the weight of the loss
of nonobject confidence, 1?;)0bJ denotes that the object is not

detected by the jth bounding box in the ith cell, I?bJ denotes
that the object is detected in the ith cell, C is the total number
of object classes, and P;(c) and P;(c) are the ground truth of
the probability for the object in the ith cell belonging to the
cth class and the correspondingly predicted one, respectively.

Finally, to jointly train the proposed color conversion net-
work and the proposed object detection network, the total loss
function is expressed as

LTotal = j~TVXLTV + ifeature XLfeature + j~style
(N

where the former three items are defined in (5) and the
four weighting coefficients, Atv, Afeawres Astyle> aNd Adetections
are empirically set to 10, 1, 1, and 1, respectively. The
selection of the weighting coefficient Aty is described in
Section IV-E.

XﬁJstyle + Adetection X Ldetection

IV. EXPERIMENTAL RESULTS
A. Network Training and Parameter Settings

For training, validating, and testing the proposed lightweight
deep underwater object detection network, other than our
generated image data set, we also collected several underwater
images, as summarized in Table I. In Table I, only video data
can be available from some data sets, where some related video
frames were selected to be included in our data set.

To create our training data set, we selected 8000 images for
training and 2000 images for validation, as shown in Table I.
In the training/validating phase, only the training/validating
data from the respective data source were included in our
training/validating set to ensure that the training/validating

data and the testing data are split. Moreover, the class split
of our data set for the categories of fishes, debris, and divers
is approximately 20%, 50%, and 30% of the total number of
images, respectively. Each image patch is in size of 320 x 320
and the batch size is set to 32. The learning rate in our
experiments is initially set to 0.001 and decayed by 0.1 if
the loss is not further reduced for each period of ten epochs.
The early stop is triggered if the loss is not further reduced
for a period of 20 epochs. In addition, the activation function
used in the proposed deep model is the leaky rectified linear
unit (Leaky ReLU) function [75], and the model parameters
were initialized based on the weight initialization technique
presented in [76]. Moreover, the loss function was minimized
using the Adam optimization algorithm [77]. Based on our
implementation with the above settings using the Keras [78]
and the PyTorch [79] platforms, through 80 epochs, a well-
trained converged deep network can be obtained. In addition,
no pretrained model was used in our experiments.

B. Quantitative Results

The proposed method was implemented on a personal
computer equipped with Intel Core i7-8700k processor, 32-GB
memory, and NVIDIA GeForce GTX 1080 GPU. The process-
ing speed of the proposed detection method achieves the
frame rate of 150-170 images (in size of 320 x 320 for
each) per second, which is extremely fast for object detection
purposes.

However, the main goal of this article is to design a light-
weight object detector, equipped on a battery-powered AUV,
used in the underwater environment. To simulate this scenario,
we also implemented the proposed deep learning-based object
detector on the Raspberry Pi 3 model B4+ with ARM Cortex-
A53, 1.4 GHz CPU, Dual Core Multimedia Co-Processor
GPU, 1-GB RAM, and 5.661-W maximum working power.
To quantitatively evaluate the performance of the proposed
lightweight underwater object detection deep network, the four
state-of-the-art deep learning-based object detection frame-
works were used for comparisons. They are the Faster
R-CNN [27], SSD [33], YOLO [29], and Tiny-YOLO [29].
The backbones used for Faster R-CNN, SSD, YOLOv2, and
YOLOV3 frameworks in our experiments are VGG-16 [67],
ResNet-101 [52], Darknet-19 [80], and Darknet-53 [80],
respectively. The same data augmentation technique (by the
proposed training sample generation method) was used for
training all the evaluated deep models for object detection. The
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TABLE II

QUANTITATIVE PERFORMANCE EVALUATIONS CONDUCTED ON THE RASPBERRY PI IN TERMS OF THE mAP FOR OBJECT DETECTIONS, GFLOPs,
PROCESSING TIME (IN SECONDS) PER IMAGE, AND FPS FOR THE FOUR STATE-OF-THE-ART METHODS AND THE PROPOSED METHOD ON OUR
COLLECTED DATA SET DESCRIBED IN TABLE I, WHERE “-” MEANS THAT THE CORRESPONDING EVALUATED MODEL IS TOO COMPLEX
TO BE EMBEDDED INTO THE USED RASPBERRY PI FOR PROCESSING MULTIPLE SUCCESSIVE FRAMES

Evaluated Methods Faster R-CNN [27] SSD [33] YOLO [29] Tiny-YOLO [29] Proposed
mAP 78.62% 82.34% 89.99% 89.81% 89.56 %
GFLOPs 43.82 34.334 38.22 8.225 5.06
Processing Time per 1055.87 55.73 65.22 30.88 3.02
Image (in seconds)
FPS - - - - 0.5~1

Fig. 7.

[E R SN

(b)

Samples of training/testing underwater images containing objects of fishes, debris, and divers, described in Table 1. (a)—(d) Training images, where

(d) is generated by our image generator just for augmenting training samples and (e)—(h) testing images.

four compared methods were also implemented on the same
platform and evaluated with the proposed method, in terms of
the mean of average precision (mAP) for object detections,
required (giga floating-point operations (GFLOPs) [81], aver-
age processing time (in seconds) per image, and FPS (average
number of processed frames per second, i.e., frame rate),
for system performance assessment. The mAP metric used
in our experiments is calculated by setting the intersection
over union (IoU) threshold to 0.5. This setting follows the
primary metric used in the evaluation of the PASCAL VOC
data set [82] and also used as another metric in evaluating the
Brackish data set [51]. Table II shows the experimental results
conducted on the 2400 testing underwater images (in size
of 320 x 320 for each) containing the three classes of objects,
i.e., fishes, underwater debris, and divers (described in Table I,
as some samples shown in Fig. 7). As shown in Table II,
the proposed method outperforms or is comparable with the

four methods [27], [29], [33] used for comparisons in terms
of mAP (the most popular metric in assessing the accuracy of
object detectors). However, in the viewpoint of computational
complexity, the proposed method significantly outperforms
the four state-of-the-art methods in terms of the GFLOPs,
processing time per image, and FPS metrics. It should be noted
that the Faster R-CNN [27], SSD [33], YOLO [29], and Tiny-
YOLO [29] network models are too complex to be embedded
into the used Raspberry Pi platform for processing multiple
successive frames based on that loading such complex model
will consume most of the system resources. They can usually
process one frame and the system would be out of resource
when processing the next frame. Therefore, it is hard to report
the FPS of the compared models in Table II based on the used
Raspberry Pi platform.

Moreover, the main reason for that SSD [33] outperforms
Faster R-CNN [27] in our experiments (based on Table II)
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TABLE III

QUANTITATIVE PERFORMANCE EVALUATIONS CONDUCTED ON THE RASPBERRY PI IN TERMS OF THE mAP FOR OBJECT DETECTIONS, GFLOPs,
AND PROCESSING TIME (IN SECONDS) PER IMAGE FOR THE THREE STATE-OF-THE-ART METHODS AND
THE PROPOSED METHOD ON THE BRACKISH DATA SET [51]

Evaluated Methods Faster R-CNN [27] YOLOV2 [30] YOLOV3 [31] Proposed
mAP 75.69% 33.55% 82.03% 80.12%
GFLOPs 44.01 17.22 38.45 5.06
Processing Time per > 1000 35.86 67.08 328

Image (in seconds)

should be related to the used underwater image data set.
The collected underwater image data set includes many
images containing small objects to be detected. Based on our
experiments conducted on our underwater image data set, SSD
outperforms Faster R-CNN in terms of mAP. Similar results
were also found in the literature, such as [28] and [33]. On the
other hand, YOLOvV3 achieves the best performance in the
experiments based on its multiscale prediction mechanism.
It was also shown that YOLOv3 exhibits better performance
for detecting smaller objects in the literature, see [31], [32].
The proposed method also applies multiscale prediction for
object detection. Since the proposed framework is designed
in a lightweight manner, the performance is therefore slightly
worse than those of YOLO and Tiny-YOLO in Table II and
slightly worse than that of YOLOvV3 in Table III. However,
the proposed framework is with significantly lower network
complexity than these compared architectures.

In addition, we also compared the network complexity of
the proposed deep model with other lightweight deep model
designed for fish detection (see [47]). The lightweight deep
model presented in [47] relies on Faster R-CNN [27]. It was
reported in [47] that the run time per image (0.089 s) of this
network is just slightly faster than that (0.102 s) of faster
R-CNN on the platform equipped with two high-end cards
of NVIDIA Tesla K20. However, the main goal of this article
is to design a lightweight deep model to be embedded into
an AUV. Based on Table II, on the (low-end) Raspberry Pi
platform, the run time of faster R-CNN is significantly higher
than that of the proposed method. Therefore, it is expected
that the network complexity of the proposed deep model
should be lower than that of the faster R-CNN-based model
presented in [47].

Moreover, other than the reported GFLOPs and processing
time of the proposed method, the lightweightness of the
proposed deep model mainly relies on the specific design
described as follows. In the feature extraction CNN module
of the proposed object detection network, the max-pooling
operation is used to reduce the spatial dimension of feature
maps. In addition, based on the stage-by-stage manner of the
feature extraction part (see Fig. 3), the feature map size can be
greatly reduced. Moreover, for a larger feature map, a smaller
number of channels are used for output. On the other hand,
the receptive module (also used in the feature extraction part)
applies the squeeze layer to reduce the channel size of the
expand layer output for efficient network computation.

Fig. 8. Samples of underwater objects from the Brackish data set released
by Pedersen et al. [51] used in our experiment described in Table III. (a) Big
fish, (b) crab, (c) small fish, and (d) starfish.

On the other hand, the Brackish data set with the object
detection results using YOLOv2 [30] and YOLOv3 [31] was
presented in [51]. The Brackish data set (also employed for
performance evaluation in this study) consists of annotated
image sequences of fish, crabs, and starfish captured in
brackish water with varying visibility. More specifically,
the videos in the Brackish data set were categorized and
manually annotated, resulting in a total of 14 518 frames with
25 613 annotations of the six classes, i.e., big fish, small fish,
crab, jellyfish, shrimp, and starfish. Based on the fact that
the numbers of the images, including the objects of jellyfish
and shrimp, are too few, the two classes are ignored in our
experiment. Some samples of the four categories considered
in this experiment are shown in Fig. 8. Following the experi-
mental settings in [51], the data set is split into 80% data for
training, 10% data for validation, and 10% data for testing. The
data split of the Brackish data set is provided by the original
paper [51] and the data released from [83]. In our experiments,
the input image size is set to 320 x 320. Table III reports the
quantitative results conducted on the Brackish data set, where
the Faster R-CNN [27], YOLOvV2 [30], and YOLOv3 [31], and
proposed methods were evaluated on the Raspberry Pi 3 model
B+ (described earlier). As revealed in Table III, the proposed
method still outperforms or is comparable with the three
methods [27], [30], [31] used for comparisons in terms of
mAP. The mAP performances obtained by our experiments
for the YOLOV2 [30] and YOLOv3 [31] are also consistent
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TABLE IV

QUANTITATIVE RESULTS IN TERMS OF THE mAP, GFLOPs, AND THE NUMBER OF TRAINING EPOCHS FOR THE ABLATION STUDY BY EVALUATING
THE APPROACHES OF THE PROPOSED W/O COLOR CONVERSION, THE PROPOSED WITH STANDARD COLOR
CONVERSION, AND THE COMPLETE PROPOSED FRAMEWORK

Evaluated Methods Proposed w/o Color Conversion Proposed with Standard Color Conversion Proposed
mAP 87.8 84.43 % 89.56 %
GFLOPs 4.88 5.02 5.06
Number of Training Epochs 107 81 76

with those reported in [51]. In addition, the proposed method
significantly outperforms the three state-of-the-art methods in
terms of the GFLOPs and processing time per image.

C. Ablation Study for Evaluation of Color Conversion

To evaluate the contribution of the proposed color con-
version network to the overall object detection performance,
an ablation study was conducted as follows. In this study,
the following three approaches were evaluated. The first is
to only use the proposed object detection network without
incorporating the proposed color conversion network (denoted
by proposed w/o color conversion). The second is to employ
the color conversion relying on the standard color space [84]
as a preprocessing stage to transform an input color image
to the corresponding grayscale version (denoted by proposed
with standard color conversion). The employed standard color
conversion is based on the standard red green blue (sSRGB)
color space [84] and the gamma expansion (linearization) to
transform the image to a linear RGB space. Thus, the appro-
priate weighting coefficients can be applied to the linear
color components, R, G, and B, to calculate the linear
luminance (grayscale) component [85]. Moreover, the third
approach is the complete proposed deep framework, includ-
ing joint learning of color conversion and object detection
(denoted by proposed). Table IV shows the quantitative results
(also based on the data set described in Table I) of the
three evaluated approaches in terms of the mAP, GFLOPs,
and the number of training epochs. The number of epochs
for each evaluated method was obtained when researching
the minimum validation error. As observed from Table IV,
the complete proposed deep model (with a fewer number
of training epochs and slightly higher required GFLOPs)
outperforms the approaches of the proposed method without
color conversion and the proposed method with standard color
conversion in terms of the mAP for object detection. The main
reason is that the proposed method (with our color conversion)
simultaneously learning the color conversion task and the
underwater object detection task would obtain better conversed
grayscale images than those obtained by the standard color
conversion method. The better transformed grayscale images
with less possible noises and better grayscale values (e.g., bet-
ter contrast) would benefit the feature learning for the object
detection process. In addition, the GFLOPs of the proposed
color conversion network are only 0.18.

Moreover, some examples of converted grayscale images
(with highlighted regions) obtained by the standard color

©

Fig. 9. Examples of color conversion (a) original color image and the
converted grayscale images of (a) obtained by (b) standard color conversion
method [85] and (c) proposed color conversion network.

conversion method [85] and the proposed color conversion
network are shown in Fig. 9. As a result, the proposed
deep model for joint learning of color conversion and object
detection is indeed beneficial to underwater object detection.
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TABLE V

ABLATION STUDY RESULTS IN TERMS OF THE mAP FOR OBJECT
DETECTION BY EVALUATING THE APPROACHES OF THE
PROPOSED w/0 GENERATED SAMPLES AND THE
COMPLETE PROPOSED FRAMEWORK

Proposed w/o

Evaluated Methods Generated Samples Proposed
mAP 86.13 % 89.56 %
TABLE VI

ABLATION STUDY RESULTS IN TERMS OF THE mAP FOR OBJECT
DETECTION BASED ON DIFFERENT WEIGHTING VALUES
OF Arv USED IN THE L0OSS FUNCTION OF
THE PROPOSED METHOD

Values of Ary mAP
1 86.04%
5 87.69%
10 89.56%
50 86.23%
100 84.66%

D. Ablation Study for Evaluation of Training
Sample Generation

To evaluate the effectiveness of the proposed training sample
generation framework, we also conducted an ablation study
described as follows. We trained another object detector
(denoted by proposed w/o generated samples) by using only
the training samples described in Table I, excluding the
generated training images. To train the deep model without the
generated training samples, we followed the same parameter
settings as the proposed deep model with generated training
samples described in Section IV-A. Table V presents the mAP
performances for object detection obtained by the approaches
of Proposed w/o generated samples and the complete pro-
posed framework (with generated training samples). It can be
observed from Table V that artificially augmenting training
samples indeed result in better object detection performance.
The main reason can be described as follows. In the proposed
training sample generation process, many objects of the three
categories (e.g., fishes, debris, and divers) mainly considered in
our object detection process are selected with different under-
water scenes (backgrounds) to form our training images. Based
on this data augmentation process, the proposed deep model
would be more adaptable to diverse underwater scenes for
accurately detecting the interested objects than other models
without using the data augmentation process.

E. Selection of Weighting Coefficient for Total
Variation Term in the Loss Function

To empirically decide the best weighting coefficient Ay
for the TV term used in the loss function defined by (7),
we conducted the following ablation study based on our

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

collected data set described in Table I. We used different
values for Aty with fixing all the values of Afeawres Astyles
and Agetection to 1 and reported the corresponding detection
accuracies in Table VI. Based on Table VI, Ay is empirically
set to 10 in all the experiments of this study.

V. CONCLUSION

In this article, we have proposed an end-to-end light-
weight underwater object detection deep neural network based
on joint learning of color conversion and object detection.
The learned image color conversion module aims at trans-
forming color images to the corresponding grayscale images
to solve the problem of underwater color absorption to enhance
the object detection performance with lower computational
complexity. The presented ablation study has shown the effec-
tiveness of the proposed color conversion network, contribut-
ing to the overall object detection performance. Experimental
results conducted on the low-power Raspberry Pi device have
justified the effectiveness of the proposed lightweight jointly
learning model for underwater object detection compared with
the state-of-the-art approaches.
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