
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

A 40.96-GOPS 196.8-mW Digital Logic
Accelerator Used in DNN for

Underwater Object Recognition
Chua-Chin Wang , Senior Member, IEEE, Ralph Gerard B. Sangalang , Member, IEEE, Chien-Ping Kuo ,

Hsin-Che Wu , Yi Hsu, Shen-Fu Hsiao , Member, IEEE, and Chia-Hung Yeh , Senior Member, IEEE

Abstract— This investigation presents a digital logic accelerator
(DLA) design of a neural network hardware that utilizes output
reuse. The DLA is used in the detection mechanism of underwater
objects that was deployed in an underwater vehicle. A modified
YoloV3-tiny network was also implemented to detect more than
20 underwater objects. The proposed DLA uses processing
units that have parallel architectures of output windows, and
output channels. Moreover, a new Inter-Controller is designed
to control the direct memory access (DMA) together with a
new Reshape module to improve the performance and power
efficiency. A detailed description of the design as well as the
measurements on silicon are presented. The chip is realized using
a typical 180-nm CMOS process. It showed a performance result
of 40.96 GOPS and the power consumption is 196.8 mW. The
DLA was tested to demonstrate 19.88 frames per second and
40.96 GOPS.

Index Terms— Deep learning, deep neural networks (DNN),
hardware accelerators, energy efficient, reshape module.

I. INTRODUCTION

ARTIFICIAL (AI) intelligence and nanotechnology are
expected to be a 193.2 billion US dollar industries

by 2025. These technologies were also identified by the
United Nations as “frontier technologies” in its 2021 Tech-
nology and Innovation Report [1]. Convolutional neural net-
works (CNN) and deep neural networks (DNN) have been

Manuscript received 25 March 2022; revised 3 June 2022; accepted
26 June 2022. This work was supported in part by the Ministry of Science and
Technology, Taiwan, under Grant MOST 110-2221-E-110-063-MY2, Grant
MOST 110-2218-E-110-008-, and Grant MOST 110-2224-E-110-004-. This
article was recommended by Associate Editor A. James. (Corresponding
author: Chua-Chin Wang.)

Chua-Chin Wang is with the Department of Electrical Engineering and the
Institute of Undersea Technology, National Sun Yat-sen University, Kaohsiung
80424, Taiwan (e-mail: ccwang@ee.nsysu.edu.tw).

Ralph Gerard B. Sangalang and Hsin-Che Wu are with the Department of
Electrical Engineering, National Sun Yat-sen University, Kaohsiung 80424,
Taiwan.

Chien-Ping Kuo is with the Department of Electrical Engineering, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan, and also with MediaTek
Inc., Hsinchu 30078, Taiwan.

Yi Hsu is with the Department of Computer Science and Engineering,
National Sun Yat-sen University, Kaohsiung 80424, Taiwan, and also with
MediaTek Inc., Hsinchu 30078, Taiwan.

Shen-Fu Hsiao is with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.

Chia-Hung Yeh is with the Department of Electrical Engineering, National
Taiwan Normal University, Taipei 10610, Taiwan, and also with the Depart-
ment of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung
80424, Taiwan.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2022.3187450.

Digital Object Identifier 10.1109/TCSI.2022.3187450

in the forefront of AI applications. Applications of CNN
and DNN in computer vision includes tasks such as image
detection and recognition. It has been used in areas as agricul-
tural systems [2], biomedical robots [3], industrial robots [4],
autonomous vehicles [5], aerial drones [6], and underwater
vehicle [7]. With this, demands for computing resources
also increased. State-of-the-art image processing architectures
such as AlexNet [8], ZFNet [9], Inception [10], VGG [11],
ResNet [12], ResNeXt [13], and SENet [14] normally wins
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). For this reason, academic and industrial communi-
ties pay close attention to AI-based developments primarily for
its wide array of applications. The number of published papers
related to AI and machine learning (ML) increased ten times
annually during the period of 1998 to 2017 [15]. Notably,
the biggest challenge in AI-related applications is to equip it
into autonomous underwater vehicles (AUV) [16]. The overall
power in these underwater applications is constrained by the
battery of the vehicle systems. Training underwater images is
more complex than that for those objects on land due to the dif-
ferent lighting conditions and shortage of underwater samples.

Several hardware accelerators have been reported in the
previous years [17]–[28]. The systolic architecture proposed
in [17] and [18] have reconfigurable designs for different
convolution kernels. Tu et al. uses reconfigurable data path
and convolution engine design which makes it more hardware
efficient but it has a high area cost due to the complexity
of the control structure [17]. The low power design in [18]
allowed the systolic data flow to run only in the PE rows rather
than the entire 2D plane, thus allowing data reuse of filters &
input features along with convolution kernel reuse. The spatial
architecture of [23] is an improved version of [19] that uses
clustering of sparse CNNs to achieve higher throughput but
requires a larger area. A filter and input reuse in the streaming
architecture in [20] is reported to be energy efficient but it
has a low hardware utilization. Lastly, filter-type structures
are presented in [21] and [22]. More importantly, none of the
above works were focused on underwater object recognition
applications.

Major Contributions of the Proposed DLA

In this investigation, the authors proposed and achieved as
follows:

1) A modified network toward power effectiveness based
on the YoloV3-tiny was presented to detect different

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2426-2879
https://orcid.org/0000-0002-2837-6662
https://orcid.org/0000-0002-1406-0018
https://orcid.org/0000-0002-4627-570X
https://orcid.org/0000-0002-4120-382X
https://orcid.org/0000-0001-8619-9900

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE I

MODEL DATASET USED FOR TRAINING

underwater objects. The reason is underwater vehicles
are battery-operated with limited battery storage.

2) A high throughput and low power hardware accelerator
utilizing output reuse is implemented on silicon to assist
in detection and recognition for underwater objects.

3) A new Inter-Controller is designed to minimize power
dissipation of the DLA.

4) A hardware padding is proposed to reduce DRAM
transmission between the hardware and CPU, achieving
lower power dissipation performance.

The power constraint of the design is highly prioritized
so that when deployed to an underwater vehicle, the object
recognition would not consume a large chunk of power of
the vehicle. Initial designs of the DLA was downloaded and
implemented in the ZCU102 FPGA board. It was found out
that the DLA alone consumes 4.322 W of power, hence it is
impractical to deploy it for underwater missions.

The rest of the report is organized in the following manner.
Section II presents the methodology used in designing the
hardware accelerator. A discussion of the data set preparations
is presented in this section as well as the proposed network
for underwater object detection. A detailed discussion of
all modules is presented. Section III presents the simulation
and measurement results as well as system validation of the
hardware accelerator. And to wrap the it up, the conclusion
drawn in this study is presented in Section IV.

II. DLA DESIGN AND ANALYSIS

A. Data Set Preparation

An image database is needed to be able to train, verify, and
test any neural network. In this investigation, we collected
various images from repositories such as ImageNet [29] and
The Fish Database of Taiwan [30]. A total of 110,378 images
were used in the training, verification, and testing of the
proposed network. A summary of the number of images used
is presented in Table I. The network is trained to classify
twenty objects, namely fish, lion-fish, sharks, turtles, divers,
jellyfish, and so on, as shown in Table I.

B. Proposed DNN for the Underwater DLA Implementation

Because of the hardware architecture’s limited resources, the
size of the DNN model must be lowered as much as neces-
sary without compromising too much accuracy. The authors

TABLE II

EFFECTS OF NUMBER FORMAT ON MAP OF THE NETWORK

TABLE III

COMPARISON WITH OTHER NETWORKS FOR UNDERWATER DETECTION

proposed a lightweight network based on the YoloV3-tiny
network [31]. Fig. 1 depicts the modified neural network to
be used for the DLA. The symbol N represents the number
of output channels of the proposed network given by N =
3(4 + 1 + x), where x represents the number of object to be
identified. The proposed network has 3 scales of prediction,
4 offsets of the bounding box, and an objectiveness of 1,
similar to YoloV3 [32].

The proposed network was firstly tested by software to see
the effects of the data format. Results of the experiments
were presented in Table II. It can be seen that lower bit
resolution offered poor performance in terms of the mean
average precision (mAP). A float-32 format obtained the best
mAP for the network. However, floating point operations
require more hardware resources. It was only 0.2% better
than float-16 and fixed-16 format. Hence, the risk of more
operations outweighs the performance benefits. Since, the
float-16 and fixed-16 formats offer the same performance,
it was best to choose the fixed-16 format to gain smaller area
without sacrificing the performance. The computation amount
of the proposed network is found to be 2.06 GFLOPs (giga-
floating point operations) using the 16-bit fixed point precision
data.

Table III shows a comparison of the proposed network to
other networks that was implemented specifically to recog-
nize underwater images. It can been seen that the proposed
network can detect more objects at almost the same mAP
values. It also has the smallest numbers of operations such
that it will have lower power consumption. The network
by Zhang et al. [33] was implemented in an Intel Xeon
Gold 6130 CPU with RTX2080ti GPU. It offers a good
object detection speed at the expense of using power hungry
devices. The network by Yeh et al. [16] was implemented
in a Raspberry Pi 3 B+ platform, a low-power mini-PC with
an power consumption of around 2 W. Our implementation
offered a very-low power performance at the expense of an
acceptable real-time FPS (≈20 FPS).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 40.96-GOPS 196.8-mW DLA USED IN DNN FOR UNDERWATER OBJECT RECOGNITION 3

Fig. 1. Lightweight network based on YoloV3-tiny.

Fig. 2. Proposed hardware accelerator architecture (DLA) for DNN.

C. Neural Network Hardware Architecture
The proposed deep convolutional network architecture is

presented in Fig. 2. A new Inter-Controller is used for the
Direct Memory Access (DMA) as well as new Reshape
modules in the DNN DLA to achieve low-power and high-
performance for the hardware accelerator. These new mod-
ules will be used to control the convolution operations in
the PE (processing element) Array in Fig. 2. Convolution
operations are normally used to perform discrimination of
difficult objects. This process is achieved by digital filters that
are represented by 1D or 2D matrices. Depending on the filter
weights, or kernel weights, the convolution can have different
effects on an image. The image can be blurred, sharpened,
recolored, or detected as boundaries or edges. Fig. 3 shows the
structure of the convolution layer. It is composed of an input
feature map, kernel, and output feature map. The convolution
operation has M number of output channels (OM) and N
number of input channels (IM) with kernel size, K. The size
of the output feature map is H × W.

Even though large-scale computing models offers better
recognition performance, the input feature map (IM) and the
kernel generated after training cannot be stored in the on-
chip buffer. The workaround to this is dividing the entire
IM into multiple blocks to become smaller size. Tile-based

Fig. 3. Illustration of the convolution operation.

calculation is used to make the required memory size smaller.
The internal memory required under batch calculation are Tm
and Tn, the number of OCHs and ICH, respectively. The
size of the OM is Tr × Tc, while for kernel it is Ti × Tj.
These parameters will determine the overall size of the on-
chip buffer. In actual hardware calculations, the data in this
batch of tiles are calculated in numerous cycles. Hence a very
large number of computation units are required. Usually, these
operations require smaller number of calculations at higher
computation cycles so that operation needs to be parallel. The
corresponding parameter of the operation value is composed
of Pm, Pn, Pr, Pc, Pi, Pj, which respectively represent the
number of OCHs, the number of ICHs, the length & width of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 4. Convolution operation and SRAM allocation in (a) ICP, (b) OCP,
(c) OWP, and (d) KWP.

OM, and the length & width of the kernel to be operated in
parallel in a cycle.

In this design, the number of arithmetic units (number of
PEs) represents the number of multiply and accumulate (MAC)
cycle operations. When PE parallel operations are in different
positions, the size of the on-chip buffer will definitely change
differently. Referring to Fig. 3, where Tm is in the grid, Tn,
Tr, Tc, K parameters represent how many OCH, ICH, output
windows, and kernels are calculated by the hardware in a unit
time, respectively. The total number of arithmetic units in the
hardware is the product of these parameters. The convolution
operation usually has three parallel computing methods on
the hardware classified as: 1. Input Channel Parallel (ICP), 2.
Output Channel Parallel (OCP), and 3. Window Parallel (WP).

Referring to Input Channel parallel (ICP) in Fig. 4(a), the
input features are placed in all channels and then convolved
with the set of corresponding row kernels and the results are
placed in a single portion of the output map. The Output
Channel Parallel (OCP), on the other hand, saves multiple
convolution operation results in different channels of the
output map as shown in Fig. 4(b).

The third computing method is the (Window Parallel) WP,
which is divided into Output Window Parallel (OWP) and
Kernel Window Parallel (KWP). The OWP is done by calcu-
lating the same OCH value using PE operation and the same
weight position. This is shown in Fig. 4(c). The PE operation
using different weight position and the same output window
is called KWP as shown in Fig. 4(d). However, this method
requires more ports to support the calculation, the area of the
input/output buffers of the two parallel calculation methods
will not increase.

Fig. 5. Processing element (PE) internal architecture.

D. Sub-Circuit Design and Operation

1) Multi-Precision Processing Element (PE): The PE hard-
ware supports MAC operations. The sub-PE is a 9 × 3 mul-
tiplier accepting signed 8-bit inputs and signed 2-bit kernels.
The PE uses 16 sets of multipliers that are constructed to
operate simultaneously. The adder tree presented in Fig. 5 sup-
ports multiple accumulation process according to the degree
of computation needed. This design allows input precision to
support 16 bits or 8 bits, while the kernel precision supports
16, 8, 4, 2 bits, so it can dynamically support Multi-Precision
(MP). These excludes the sign bit for the precision. For
the PE to support low precision operation, multiple input
channel (ICH) data should be loaded at the same time in the
multipliers for accumulation.

2) PE Array: The 8 × 32 PE array is composed of 8 rows
of OWP and 32 columns of OCP as presented in Fig. 6.
To reduce the area and power consumption of the array,
the excitation functions (ReLU, Leaky ReLU, Max-pooling,
Concatenation), quantization, and batch normalization of the
pixels are performed outside the array prior to the output
SRAM.

3) Input SRAM: Since our design is designed to be multi-
precision, the input precision can be 16, 8, 4, and 2 bits
precision. The PE array operates at 100% capacity when the
input channel is using 16 bit precision. When 2-bit input is
used, 8 times throughput is required, such that 8 banks are
designed. Fig. 7 shows the input SRAM in this design, where
8 banks are included, each bank = 128 bits, which are all
composed of two-port SRAM (1R1W). The bank is divided
into two halves as double buffers to make the access time
shorter. The double buffer design has an advantage of using

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 40.96-GOPS 196.8-mW DLA USED IN DNN FOR UNDERWATER OBJECT RECOGNITION 5

Fig. 6. PE array architecture.

Fig. 7. Input SRAM architecture.

Fig. 8. Kernel SRAM architecture.

only half the bank capacity during the PE operation while the
other half is being used to load the required data. Hence, the
operation is faster and the throughput is doubled.

4) Kernel SRAM: The kernel SRAM is also designed as
a double buffer composed of two-port registers. The kernel
SRAM in this design uses 8 banks of 128 bits wide consisting
of two-port register files, as shown in Fig. 8. Since the PE
array has 32 columns of OCP, when the required throughput
of the kernel is only 16 × 32 bits, 4 banks are enough to be
utilized. To make the PE usage rate close to 100%, twice the
weight can be realized.

5) Output SRAM: The output SRAM in this design, shown
in Fig. 9, uses 4 banks with a bit width of 128 bits com-
posed of dual-port SRAM (2R or 2W or 1R1W). Since there
are 256 PEs in the PE array, each set of PEs output 16-bit data.
When the throughput required is only 16 × 32 bits, 4 banks
are enough to meet the requirements of the PE. When PE
operation needs 8 × 32 bit values, it will take 8 cycles for the
output SRAM to receive all incoming data.

6) Instruction SRAM: Instruction SRAM consists of single-
port SRAM with a depth of 512 bits and a bit width of
64 bits corresponding to the bit width of the instruction set
architecture. The instruction set architecture is introduced in

Fig. 9. Output SRAM architecture.

Fig. 10. Line buffer with 3 × 3 convolution.

detail in Section II-H. The total size is 4 kb and the maximum
single transfer limit of AXI Burst Mode is aligned.

7) Line Buffer: Fig. 10 shows the schematic diagram of
implementing the line buffer with 3×3 convolution. This was
done because during the convolution operations, the same data
will be repeated many times. If this happens to the SRAM,
a large repeated number of repeated read will occur. The line
buffer serves as a temporary storage for the input during the
convolution operations. The line buffer uses a 16-bit register
to match the width of a 128-bit two-port SRAM (1R1W), and
pushes 8 groups of 16 bits at a time through the shift register.
During convolution, the same data is repeated several times.
To minimize the number of SRAM read/write operations, the
input pixels are stored firstly in the line buffer.

8) Reshape Module: The size of the on-chip buffer in this
design is limited so that a new Reshape module is proposed
to resolve this problem. When the kernel size is >1, the input
feature map is usually padded to maintain the input feature
map size. Furthermore, since the hardware adopts tile-based
design, the input feature map is divided into many small tiles,
and these small tiles also need to have padding.

In addition, when tile <32, the Reshape module is used to
merge N small tiles into a 32 × 32 large tile and then do
the padding so that the transmission is not N× the number
of transmission. This reduces the number of transfer and load
burden of the CPU.

When a layer of a feature map is larger than the maximum
tile, which is 32, the feature map will be cut into smaller tiles
as shown in Fig. 11. The general detection model or the image
recognition uses Stride2 pooling. This can make the on-chip
next layer operation reduce the area of the tile by 4 times. The
buffer usage is reduced while the number of transmissions is
increased. Therefore, it is possible to use a Reshape module
to merge multiple tiles with a tile size ≤32. For example,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 11. Tile cutting and padding in different strides.

Fig. 12. Re-organization using the Reshape module after scheduling,
(a) single-tile transmission, (b) multi-tile transmission.

assume a tile exceeds the maximum size by 8 × 8. A total of
4 combinations of 8 × 8 tiles can turn into 32 × 32 tile, and
then perform the operation through the PE array.

If the input feature map is larger than the output map,
additional padding is used to make them equal. The proposed
design is implemented in tile-based way, where the tiles are
stored in the DRAM. After the reshape mode, all the data
returns to the original shape, as shown in Fig. 12.

E. Hardware Padding

Since the padding information exists in different sections of
DRAM, Tile and Padding information is needed to be reorga-
nized through the Reshape module. However, these informa-
tion are extracted through the CPU, as shown in Fig. 13(a).
Since the tile boundaries might be discontinuous, arranging
these discontinuous memory addresses is time consuming. The
authors proposed a hardware padding module which replaces
adjacent tiles with a boundary of its own tile. This is called
Reflection Padding. Fig. 13(b) shows the Reflection Padding
scenario. Another benefit of Reflection Padding can be seen
in the perspective of the DRAM transmission. If the CPU
executes the padding for tile size greater than 32, it will require
two burst transmissions while if padding is executed in the
hardware, only one burst transmission is required.

F. Direct Memory Access

There will be a lot of data movement operations in the con-
volution operation. If these movement operations are executed

Fig. 13. (a) Tile-based Padding; (b) Reflection Padding architecture.

Fig. 14. Simplified FSM of the Inter-Controller.

by the CPU, the data access time will be much longer than
the hardware calculation time. Therefore, we added a DMA
between the DRAM and the hardware accelerator. The DMA
is based on the AXI4 bus protocol. The burst mode of this pro-
tocol can reduce the requirements and set the number of cycles
of the bus, and DMA belongs to the Master (CPU or GPU).

G. Controller

There are two controllers in the design; Inter- and Intra-
Controller. Inter-controller is responsible for controlling the
Direct Memory Access (DMA) and the Intra-controller is in
the hardware accelerator. Its internal functions include instruc-
tion fetching and decoding, DMA error monitor, interrupt
trigger, and control register. The control signals determine the
operation of the connected modules, including the finite-sate
machine (FSM) jump, circuit switching, and power consump-
tion. The simplified FSM of the Inter-Controller is presented
in Fig. 14. It shows three general states: 1. Idle State, 2. Write
state, and 3. Read state. At Idle state, func = 0, the system is
waiting for a command to proceed to take actions. During
Write state, func = (1, 2, or 3), the controller commands
the DLA hardware to perform the calculations. Lastly, in the
Read state, func = 4, the controller will then access the
output SRAM when the write operation is done with no errors.
The overall function of the hardware accelerator is shown in
Fig. 15.

H. Software and Hardware Integration

The software and hardware integration of the proposed
network consist of two stages, Initialization and Execution
stages. The Initialization uses a single CPU thread and is
divided into three main parts: 1. DNN Model Analysis,
2. DRAM Utilization & Optimization, and 3. Layer Switching.
On the other hand, the Execution stage uses three threads that
are operating in parallel. These are: 1. Image Pre-processing,
2. Hardware (DLA) control, and 3. Post-processing of results.
Fig. 16 shows the diagram of the system operation of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 40.96-GOPS 196.8-mW DLA USED IN DNN FOR UNDERWATER OBJECT RECOGNITION 7

Fig. 15. Overall functionality of the DLA.

Fig. 16. Illustration of the Software/Hardware integration.

Fig. 17. Instruction set.

network with the software and hardware integrated with each
other.

We decided to create an instruction set architecture based
on direct control in order to make the hardware dynamically
adaptable to fit the settings of different parameters of each
layer of the DNN model. Fig. 17 depicts the instruction set
architecture of the system.

1) Layer Instruction: The layer instruction set is used by
the model corresponding to each layer that will be used by
the DLA. It is composed of 96-bit instructions. Each layer
that needs acceleration is equipped with an instruction, and
once if an operation is completed, the layers can be replaced
by another instruction. These instructions are executed only

Fig. 18. Pre-layout simulation result after memory scheduling and reorga-
nization by the Reshape module.

once per operation so that it will not mess up with the other
64-bit instructions

2) Core Instruction: The core instruction is based on the
tile-based design. It is based on the operation of one tensor.
It contains the instructions on how many ICH, OCH, and
activation functions to be used in parallel hardware operation,
or whether to use hardware accelerated pooling, etc. The main
prupose of this set is to provide for the information required by
the Intra-Controller of the DLA. With this, the control logic
can be simplified and use the CPU to schedule instructions
reducing the burden in hardware control.

3) DMA Instruction: The DMA proposed is designed using
the AXI4 bus protocol, where commands must provide the
starting address of the transfer (DRAM Address) and the
transfer length (Length), while other fields provide hardware
accelerator information, including classification, transmission
and operation synchronization of incoming data, etc.

III. SIMULATION, MEASUREMENT, AND IMPLEMENTATION

The proposed DLA architecture is implemented using a
typical 180-nm CMOS process.

A. DNN Accelerator Simulation Results

The pre-layout simulation, shown in Fig. 18, operating
at 100 MHz uses NC-Verilog to verify the functionality of the
overall circuit. The states of the FSM are decribed as follows:

• Idle State: When func = 0, the Axi_s_start signal is
logic HIGH. This means that the controller is awaiting
command for the hardware to proceed. The state machine
is said to be in the standby mode.

• Load State: When func = 1, the DRAM feeds the
data on the on-chip buffer. No output is exported and
Axi_a_wdata is unknown.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 19. Post-layout simulation results at the worst corner.

• Processing State: When func = 2, the on-chip buffer has
been loaded a complete tile information and has started
to send data to the PE array for calculation.

• Calculate State: When func = 3, there is no data being
processed in the on-chip buffer from the DRAM. The
DLA only performs calculation from the PE array.

• Store State: When func = 4, the DLA has finished all
calculations and the signal Axi_a_wdata will now show
a valid value. It will output all the data from the on-chip
buffers. Once all data is out, the irq signal and the DLA
will know that the tasks are done.

Fig. 19 shows the post-layout simulations in the worst case
corner, namely, the slow-slow (SS) process corner, and 75◦ C
at a frequency of 100 MHz. It shows a consistent result as
those given by the pre-layout simulation in Fig. 18.

B. FPGA Emulation

Object detection was firstly implemented in FPGA to test
the functionality of the proposed architecture. The FPGA
board used in the implementation is Xilinx Zynq UltraScale+
MPSoC ZCU102 evaluation board. This will ensure that the
proposed architecture operates based on the functionality it is
designed. Fig. 20 shows the diagram of the object recognition
system implemented in the FPGA. It can be seen from the
figure that the proposed architecture is performing the correct
object detection algorithm.

C. Error Analysis

To error analysis used in this investigation requires three (3)
sets of data; 1.) results of YoloV3-tiny operation performed in
a CPU; 2.) pre-layout simulation results, and; 3.) post-layout
simulation results. The results obtained from the CPU and
YoloV3-tiny is regarded as the benchmark.

e = xcpu − xsim

xcpu
(1)

The simulation results xsim (pre- or post-layout simulations)
is compared with the CPU results xcpu to get the error e using

Fig. 20. FPGA emulation verification of the object recognition system.

Fig. 21. Error analysis of the software and hardware solutions.

Fig. 22. Die photo of the DLA.

Eqn. (1). The simulation results are compared with each other
to verify whether the results are consistent. The absolute error
is found within 1.8% as shown in Fig. 21. Since the absolute
error is relatively small, the fix16 format used by the proposed
hardware was not an issue comparing to the float32 format of
the CPU.

D. Prototype Implementation

Fig. 22 shows the die micrograph of the DLA chip.
The size of the chip is 7332.58×7328.52 µm2 with a core
7042.58×7048.52 µm2. The implemented chip is composed
of the PE Array, the Controller, the SRAMs (input, weight,
instruction, & output SRAM), and other auxiliary blocks such
as input & output buffers, controller registers, reshape module,
padding, and bias circuits.

Fig. 23 shows the area utilization of the chip. It shows that
the SRAMs occupied 55% of the overall chip area where 33%

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 40.96-GOPS 196.8-mW DLA USED IN DNN FOR UNDERWATER OBJECT RECOGNITION 9

Fig. 23. Area utilization of the chip.

Fig. 24. Side-by-side comparison of the CPU vs. the proposed DLA hardware
implementations in object recognition of (a) Divers, (b) Shark, (c) Turtle, and
(d) Lionfish.

is for the output SRAM alone. The PE array and the controller
occupies 18% of the chip area, respectively.

Fig. 24 shows the side-by-side comparison of the implemen-
tations in the CPU using the proposed YoloV3-tiny algorithm
and the proposed DLA hardware. The DLA hardware reads the
video image from a host controller (via Real-time Transport
Protocol) or a streaming camera (via Real-time Streaming
Protocol). The proposed DLA was designed using Verilog
HDL. Both systems can successfully recognize all objects,
including fish, turtle, divers, sharks, etc.

E. Measurement Results

The measurement was done using an SOC test platform
(Advantest V93000 PS1600), as shown in Fig. 25. Measure-
ments shows consistent results matching with the simulations.
The measurement was carried out using 5 DLA chips mea-
sured 5 times each. Figs. 26 and 27 shows the hardware
accelerator jump test during func = 1 & 2, and func = 3 & 4,
respectively. The irq signal will be high for a short period
during FSM jump and is shown in Fig. 28. Fig. 29 shows the
shmoo plot of the DLA chip. The chips can reach the designed
frequency of 100 MHz.

Fig. 30 shows the power utilization of the hardware accel-
erator at 100 MHz frequency. The biggest one comes from
the PE array at 86.4 mW or 43.9% of the total power of the
chip. The SRAMs utilized 45.3% of the total power consumed
by the chip. Table IV shows the breakdown of the power
consumption of each module. The overall power consumed
by the chip is 196.8 mW, which is a 95% reduction from our
initial FPGA implementation.

Table V shows the comparison with many recent NN
accelerator works. The proposed design is implemented using
a typical 180-nm CMOS process. The supply voltage used is

Fig. 25. DLA measurement environment.

Fig. 26. DLA jump test, func = 1 and func = 2.

Fig. 27. DLA jump test, func = 3 and func = 4.

TABLE IV

POWER DISTRIBUTION AT 100 MHZ

1.8 V operating at 100 MHz. The proposed design consists
of 256 MACs and uses 16-bit precision format. The mea-
sured performance of the proposed design is 40.96 GOPS at
196.8 mW power. Since the proposed network is found to
be 2.06 GFLOPs, the frame rate of the system is 19.88 FPS.
It has an area efficiency of 0.7638 GOPS/mm2 and power
efficiency of 0.2081 TOPS/W. The figure of merit (FOM) used
to compare the designs is the power efficiency and normalized

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE V

COMPARISON TABLE WITH PREVIOUS WORKS

Fig. 28. irq signal jump of the hardware accelerator during FSM jump.

Fig. 29. Shmoo plot of the hardware accelerator.

Fig. 30. Power utilization of the chip at 100 MHz.

with the operating frequency, CMOS process feature size, and
supply voltage. It can be seen from Table V that the proposed
design has the best FOM, 20.813 TOPS-GHz/W.

TABLE VI

SYMBOLS USED IN TEXT

IV. CONCLUSION

A high performance and low-power deep learning hardware
accelerator is presented in this investigation. The proposed
DLA has parallel implementation of the convolution oper-
ations. A new Inter-Controller and a Reshape module is
presented in this investigation. This reduces the area of the tiles
by four folds. A comparison of the implemented hardware with
a benchmark CPU implementation to show obscure error with
the benchmark. The performance of the hardware was found
to be 40.96 GOPS at 196.8 mW power consumption operating
at 100 MHz clock rate. It also shows a power efficiency of
0.2081 TOPS/W and an area efficiency of 0.7638 GOPS/mm2.
An FOM based on the power efficiency, operating frequency,
normalized process, and normalized voltage showed that our
design is the best so far. The same methodology can be utilized
in a more advanced CMOS process for better performance.

ACKNOWLEDGMENT

The authors would like to thank Taiwan Semiconduc-
tor Research Institute (TSRI) and Taiwan Ocean Research
Institute (TORI) in National Applied Research Laboratories
(NARLabs), Hsinchu, Taiwan, for the support of the chip

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 40.96-GOPS 196.8-mW DLA USED IN DNN FOR UNDERWATER OBJECT RECOGNITION 11

fabrication and measurement, and R/V Legend ship in open
water testing.

APPENDIX

Table VI shows all the symbols that are used in the text.

REFERENCES

[1] UN, Technology and Innovation Report 2021: Catching Tech-
nological Waves Innovation with Equity, United Nations Publi-
cations, New York, NY, USA, May 2021. [Online]. Available:
https://unctad.org/system/files/official-document/tir2020_en.pdf

[2] A. L. P. D. Ocampo and E. P. Dadios, “Mobile platform implementation
of lightweight neural network model for plant disease detection and
recognition,” in Proc. IEEE 10th Int. Conf. Humanoid, Nanotechnol., Inf.
Technol., Commun. Control, Environ. Manage. (HNICEM), Nov. 2018,
pp. 1–4.

[3] M. Chang, T.-W. Kim, J. Beom, S. Won, and D. Jeon, “AI therapist
realizing expert verbal cues for effective robot-assisted gait training,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 12, pp. 2805–2815,
Dec. 2020.

[4] S. Ji et al., “Learning-based automation of robotic assembly for smart
manufacturing,” Proc. IEEE, vol. 109, no. 4, pp. 423–440, Apr. 2021.

[5] C. Chatzikomis, A. Sorniotti, P. Gruber, M. Zanchetta, D. Willans, and
B. Balcombe, “Comparison of path tracking and torque-vectoring con-
trollers for autonomous electric vehicles,” IEEE Trans. Intell. Vehicles,
vol. 3, no. 4, pp. 559–570, Dec. 2018.

[6] H. Lim et al., “Deep learning-aided synthetic airspeed estimation of
UAVs for analytical redundancy with a temporal convolutional network,”
IEEE Robot. Autom. Lett., vol. 7, no. 1, pp. 17–24, Jan. 2022.

[7] Y.-C. Chou, H.-H. Chen, C.-C. Wang, H.-M. Chou, and C.-C. Wang,
“An AI AUV enabling vision-based diver-following and obstacle avoid-
ance with 3D-modeling dataset,” in Proc. IEEE 3rd Int. Conf. Artif.
Intell. Circuits Syst. (AICAS), Jun. 2021, pp. 1–4.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[9] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Aug. 2014,
pp. 818–833.

[10] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–4.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[13] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[14] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[15] S. D. Erokhin, “A review of scientific research on artificial intelligence,”
in Proc. Syst. Signals Generating Process. Field Board Commun.,
Mar. 2019, pp. 1–4.

[16] C.-H. Yeh et al., “Lightweight deep neural network for joint learn-
ing of underwater object detection and color conversion,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Apr. 26, 2021, doi:
10.1109/TNNLS.2021.3072414.

[17] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep con-
volutional neural network architecture with reconfigurable computation
patterns,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,
no. 8, pp. 2220–2233, Aug. 2017.

[18] Y. Huan, J. Xu, L. Zheng, H. Tenhunen, and Z. Zou, “A 3D tiled low
power accelerator for convolutional neural network,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[19] Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.

[20] L. Du et al., “A reconfigurable streaming deep convolutional neural
network accelerator for Internet of Things,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 1, pp. 198–208, Jan. 2018.

[21] Y.-J. Lin and T. S. Chang, “Data and hardware efficient design for
convolutional neural network,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 5, pp. 1642–1651, May 2018.

[22] J. Wang, J. Lin, and Z. Wang, “Efficient hardware architectures for deep
convolutional neural network,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 6, pp. 1941–1953, Nov. 2018.

[23] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE J. Emerging Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308,
Jun. 2019.

[24] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
FDSOI,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 246–247.

[25] J. Jo, S. Kim, and I.-C. Park, “Energy-efficient convolution architecture
based on rescheduled dataflow,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 12, pp. 4196–4207, Dec. 2018.

[26] J. Sim, S. Lee, and L. S. Kim, “An energy-efficient deep convolutional
neural network inference processor with enhanced output stationary
dataflow in 65-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 28, no. 1, pp. 87–100, Jan. 2020.

[27] J. S. P. Giraldo, S. Lauwereins, K. Badami, and M. Verhelst, “Vocell:
A 65-nm speech-triggered wake-up SoC for 10-µW keyword spotting
and speaker verification,” IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 868–878, Apr. 2020.

[28] S.-F. Hsiao, K.-C. Chen, C.-C. Lin, H.-J. Chang, and B.-C. Tsai, “Design
of a sparsity-aware reconfigurable deep learning accelerator supporting
various types of operations,” IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 10, no. 3, pp. 376–387, Sep. 2020.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[30] K. T. Shao, The Fish Database Taiwan. Accessed: Feb. 8, 2019. [Online].
Available: www.fish4knowledge.eu

[31] J. Redmon. (2013). DarkNet: Open Source Neural Networks in C.
Accessed: 2016. [Online]. Available: http://pjreddie.com/darknet/

[32] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[33] M. Zhang, S. Xu, W. Song, Q. He, and Q. Wei, “Lightweight underwater
object detection based on Yolo v4 and multi-scale attentional feature
fusion,” Remote Sens., vol. 13, no. 22, p. 4706, Nov. 2021.

[34] C. Liu et al., “A dataset and benchmark of underwater object detection
for robot picking,” 2021, arXiv:2106.05681.

[35] M. Pedersen, J. B. Haurum, R. Gade, and T. B. Moeslund, “Detection
of marine animals in a new underwater dataset with varying visibility,”
in Proc. CVPR Workshops, Jun. 2019, pp. 18–26.

Chua-Chin Wang (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from the
State University of New York (SUNY) at Stony
Brook, USA, in 1992.

He then joined the Department of Electrical Engi-
neering, National Sun Yat-sen University (NSYSU),
Taiwan, where he was elevated to be a Distinguished
Professor in 2010. He was nominated as the ASE
Chair Professor in 2013 and elected to be the Dean
of Engineering Collage in 2014. In 2018, he was
assigned as the Director General of Underwater

Vehicle Research and Development Center. He is now the Vice President
at the Office of Research and Development, NSYSU. His research interests
include memory and logic circuit design, communication circuit design, and
interfacing I/O circuits.

Dr. Wang became an IET Fellow in 2012. He was named as a Distinguished
Lecturer of IEEE Circuits and Systems Society (CASS) (2019–2021). He
chaired the IEEE CASS Nanoelectronics and Giga-Scale Systems (NG)
Technical Committee (2008–2009). He was the General Chair of the
2015 Symposium on Engineering Medicine and Biology Application (2015
SEMBA), the 2012 IEEE Asia–Pacific Conference on Circuits and Systems
(2012 APCCAS), and the 2011 IEEE International Conference on IC Design
and Technology (2011 ICICDT). He was the General Co-Chair of the
2010 IEEE International Symposium on Next-Generation Electronics (2010
ISNE). He was the General Chair of the 2007 VLSI/CAD Symposium.
He was an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—I: REGULAR PAPERS and IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—II: EXPRESS BRIEFS from 2010 to 2011.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2021.3072414

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Ralph Gerard B. Sangalang (Member, IEEE)
received the B.S. degree in electronics and com-
munications engineering and the M.S. degree in
electronics engineering from Batangas State Uni-
versity, Philippines. He is currently pursuing the
Ph.D. degree in electronics engineering and the
Ph.D. degree in electrical engineering under the dou-
ble degree program with Batangas State University
and the National Sun Yat-sen University, Taiwan. He
has been with Batangas State University since 2009
and was the Student Outcome Committee Chair of

the College of Engineering, Architecture and Fine Arts from 2014 to 2021.
He was the Program Chair of B.S. Electronics Engineering from 2017 to
2021 and the Interim Program Chair of the B.S. Biomedical Engineering.
He is a member of Batangas State University’s CenTraL or the Center
for Transformative Learning. His research interests include memory design,
digital systems, control systems, computational modeling, fractional circuits,
and engineering education.

Chien-Ping Kuo received the B.S. degree in electri-
cal engineering from the National Chiayi University
(NCYU), Chiayi, Taiwan, in 2019, and the M.S.
degree from the National Sun Yat-sen University
(NSYSU), Kaohsiung, Taiwan, in 2021. He is now
connected to MediaTek Inc., Taiwan. His research
interests include low-power SRAM circuit design,
mix-signal IC, and design and high performance AI
accelerator design.

Hsin-Che Wu received the B.S. degree in elec-
trical engineering from the National Sun Yat-sen
University (NSYSU), Kaohsiung, Taiwan, in 2019,
where he is currently pursuing the M.S. degree.
His recent research interests include negative charge
pump circuit design, mix-signal IC design, and high
performance AI accelerator design.

Yi Hsu received the B.S. degree from the Depart-
ment of Electronic Engineering, National Kaohsiung
University of Science and Technology, Taiwan, in
2019, and the M.S. degree from the Department of
Computer Science and Engineering, National Sun
Yat-sen University, Kaohsiung, Taiwan, in 2021. He
is now connected to MediaTek Inc., Taiwan. His
research interest is AI hardware accelerator design.

Shen-Fu Hsiao (Member, IEEE) received the B.S.
degree in electrical engineering from the National
Taiwan University, Taiwan, in 1985, the M.S. degree
in electrical engineering from the National Chiao
Tung University, Taiwan, in 1987, and the Ph.D.
degree from Yale University, USA, in 1993. Since
1993, he has been with the Department of Computer
Science and Engineering, National Sun Yat-sen Uni-
versity, Taiwan, where he is currently a Professor.
From 2002 to 2003, he was a Research Fellow
with the Department of Electrical and Computer

Engineering, University of Wisconsin–Madison. He was a Visiting Scholar
with the Department of Electrical Engineering, University of Washington,
Seattle, from August 2007 to July 2008. His current research interests include
computer arithmetic, deep learning, and VLSI design.

Chia-Hung Yeh (Senior Member, IEEE) received
the B.S. and Ph.D. degrees from the Department of
Electrical Engineering, National Chung Cheng Uni-
versity, Chiayi, Taiwan, in 1997 and 2002, respec-
tively. He was an Assistant Professor (from 2007
to 2010), an Associate Professor (from 2010 to
2013), and a Professor (from 2013 to 2017) at the
Department of Electrical Engineering, National Sun
Yat-sen University, Kaohsiung, Taiwan. He is now
a Distinguished Professor at the National Taiwan
Normal University (NTNU), Taipei, Taiwan. He has

coauthored more than 250 technical international conference papers and
journal articles. He holds 47 patents in the U.S., Taiwan, and China. His
research interests include image/video processing, deep learning, 3-D recon-
struction, and video coding. He was elected as a fellow of the Institution of
Engineering and Technology (IET) in 2017. He received the IEEE Multimedia
Signal Processing (MMSP) Top 10% Paper Award in 2013, the IEEE Global
Conference on Consumer Electronics (GCCE) Outstanding Poster Award
in 2014, the Asia–Pacific Signal and Information Processing Association
(APSIPA) Distinguished Lecturer in 2015, the NTNU Distinguished Professor
Award in 2017, and the Outstanding Technical Achievement Award from IEEE
Tainan Section. He was the Tainan Section Chair of the 2017 IEEE Signal
Processing Society (SPS). He has served as an Associate Editor for the Journal
of Visual Communication and Image Representation, the EURASIP Journal
of Advances in Signal Processing, and the International Journal of Pattern
Recognition and Artificial Intelligence.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 25,2022 at 13:24:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

