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ABSTRACT DNN (deep neural network) and CNN (convolution neural network) have been widely used in
real-time artificial intelligent (AI) applications, particularly image or video recognitions, because they have
been proved physically in many occasions. However, most prior AI hardware works either suffered from high
on-silicon area cost or low usage thereof. This investigation presents a power efficient and high performance
implementation of a digital logic accelerator (DLA) for the real-time underwater object recognition. The
proposed DLA is also featured with 2-dimensional PE (processing element) array to increase the processing
throughput by the enhancement of parallelism. The DLA design was realized and fabricated using TSMC
40-nm CMOS process. Not only the post-layout simulation results are shown, the on-silicon measurement
outcome as well as the system validation in water are also demonstrated to prove the function correctness
and the performance. The area efficiency (GOPS/mm2) is 4.562, and the power efficiency (TOPS/W) is
0.5668 on silicon, which both are the best to date.

INDEX TERMS Deep neural networks (DNN), digital logic accelerator (DLA), high degree of parallelism,
underwater object recognition, low power.

I. INTRODUCTION
Artificial intelligence (AI) has been booming in the past years
owing to its capacity to discover unnoticed patterns and links
within data sets such that it paves the way for data fusion
and decision making, which is considered to be superior
in certain occasions to human capabilities especially in the
field of medical diagnosis, anomaly detection, financial fraud
detection, real-time sensor data analysis, and predictivemain-
tenance. AI based on neural networks utilizing electronics
become field applications that greatly benefited the fields of
sound processing, video processing, communication systems,
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pattern analysis, etc. Notably, the core of the neural network
applications is either CNN or DNN, which is inspired by
extracting features in a small region of a specific specimen
to attain patterns in other regions thereof. Most of prior
reports were focused on development of better algorithms to
achieve detection and prediction with high accuracy and fast
convergence. Apparently, the overhead is high complexity
to realize these algorithms. Thus, the electronic platforms
for the developed complicated algorithms are composed of
CPUs, GPUs, and maybe FPGAs, which are all power hungry
devices.

As pointed out earlier, one of the biggest challenges in
AI-related applications is to equip AI hardware into appli-
cations where the power/energy source is limited, such as
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FIGURE 1. Underwater vehicles developed at NSYSU [1].

battery-powered autonomous underwater vehicles (AUV),
as shown in Fig. 1 [1]. It is impossible to supply enough power
directly and constantly to such underwater systems to carry
out all the required missions. That is, the overall power in
these underwater applications is constrained by the battery
size of the vehicle systems. Several works were reported
to be focused on the control architectures of an AUV to
gain efficient computing capability hence, also saving energy
resource [2], [3], [4]. Wang et al. [5] used artificial lateral line
systems (ALSS) to detect moving objects while Tian et al. [6]
focused on energy efficient underwater acoustic networks.
Huang et al. [7] on the other hand proposed a finite-time
distributed control that is used to control multiple AUVs.
Besides the development of light-weight training algorithms,
another approach is to seek more power-efficient hardware
solutions to overcome the mentioned power limitation issues
for these battery-driven AI systems.

Many research teams already put out tremendous efforts
to resolve the power-effective AI hardware demand. For
instance, Reck et al. presented one interesting design for
chip-integrated optical neural networks [8]. The feature is that
they proposed to use optical device, which are considered
to attain less power consumption, to overcome the power
hungry problems encountered by electronic platforms. How-
ever, the overhead caused by the interfacing circuits to carry
out optical-electrical data conversion was ignored. Another
similar approach was reported, combining the capabilities
of electronic and optical neural networks [9], where data
transfers between layers and modules can be done at the
speed of light using high speed fiber optic cables. Again, the
overhead for signal conversions between electrical domain
and optical domain in such an approach was not seriously
considered and analyzed.

Many researchers still paid their attention to existing
CMOS-based electronic solution such that many AI hardware
accelerators have been reported in past years. The systolic
architecture has reconfigurable designs for different convo-
lution kernels [10], [11], [12], [13], [14], [15], [16], [17],
etc. However, a large area overhead becomes the cost to pay

due to the complexity of the control structure is found [10].
The systolic data flow is only allowed to run in the PE rows
rather than the entire 2D plane to achieve data reuse of filters
alongwith convolution kernel reuse, which results in through-
put degradation [11]. Another hardware design is the spatial
architecture reported in [12], which is an improved version
of [13]. It mainly took advantage of clustering of sparse
CNNs to achieve higher throughput, but it required a larger
area. A filter and input reuse in the streaming architecture
was reported to be energy efficient, but it has a low hard-
ware utilization [14]. A potential optical solution to realize
DNN was reported by Sangalang, et al., [18]. However, this
report was simply a proof of concept research and it was not
really realized for underwater applications, either. The only
DNN/CNN research report dedicated for underwater object
recognition was given in [19], where sophisticated algorithms
were introduced in detail. However, their proposed methods
were never implemented on hardware to prove the feasibility.
More importantly, none of the above works were focused on
power-limited underwater object recognition applications.

A. CONTRIBUTIONS OF THIS WORK
Considering the above existing difficulties in the realization
of AI applications in underwater edge devices, particularly
in the battery-operated edge devices, e.g., AUVs, novel DLA
featuredwith high degree of hardware parallelism is disclosed
in this investigation so that the throughput would not be
degraded due to the limited power and the simplification
of DNN/CNN architectures besides the adoption of a light
weight YOLOv3-tiny algorithm.

II. LOW-POWER AND HIGH-THROUGHPUT DLA DESIGN
Fig. 2 shows the required interface for the proposed DLA
to co-work with auxiliary circuits. Besides the AXI wrap-
per, the control and data paths of accelerator, DMA, and
Inter-Controller are also defined to drive the DLA. More
specifically, the circuitry in the green dashed area is meant to
serve as the wrapper I/Os, where many channels are needed to
carry out the AXI protocol. The blue dashed area mainly con-
sisting of controller circuitry in charge of the state transition
of a FSM (finite state machine) generating all the commands
of data flow control, instruction control, and timing control.
Last but not least, the yellow area is the core of DLA where
all the convolution operations, MAC computation and man-
agement, and realization of parallelism are realized.

A. DLA HARDWARE ARCHITECTURE
Referring to Fig. 2 again, the proposed DLA is mainly
composed of a DNN Accelerator, an Inter-controller, and a
AXI Wrapper Direct Memory Access (DMA). Most impor-
tantly, the DNN Accelerator consists of an 8 × 32 PE array
to increase the degree of parallelism, an intra-controller,
SRAMs, reshape modules, and line buffers. Apparently, the
core of DNN or CNN is the convolution operation, namely
MAC operations. To elevate the throughput without serious
power overhead, the convolution operation is realized by

28124 VOLUME 13, 2025



C.-C. Wang et al.: Power-Efficient 0.5668 TOPS/W DLA Implemented Using 40-nm CMOS Process

FIGURE 2. Interface of the proposed DLA with auxiliary units.

FIGURE 3. Core of convolution calculations.

three parallel computing steps as follows, 1.) Input feature
map (IM), 2.) Input Channel Parallel (ICP), and 3.) Output
Channels (OCH). The above computing steps are shown in
Fig. 3, where H is the frame length, W is the frame width,
and K is the size of the Filters.

Notably, the size of IM can be derived based on Fig. 3,
which are H+K-1 and W+K-1, respectively. The number
of IM parallel input channels is N. The number of output
channels is M after the output feature map (OM) is generated
by M K×K Filters processing the IM. Apparently, the size of
the output feature map is M×H×W.

However, the realization of the above convolution is not
straightforward at all owing to the limitations posted by the
hardware availability. For instance, it is impossible to have
an unlimited size of buffer to store the computation outcome
of all the IMs and Kernels in the left hand side of Fig. 3.
Thus, we propose to divide the IMs into plural sections,
as indicated by those red boxed in Fig. 3, which will then
be processed, tiled, and padded later by Reshape module,
which will be described later in the text. Tm stands for the
memory sizes which are needed in an internal batch compu-
tation. Apparently, numerous PEs (processing element) will
be needed to carry out the computation of all the tiles in one
single cycle, as shown by Eqn. (1). If the number of PEs is
limited, on the other hand, it will take a long time, i.e., many
cycles, to execute the computation resulting the decrease of
throughput. To estimate the number of PEs, we can predict
by the following facts.

1). Tm is the number of OCH in one cycle

FIGURE 4. Illustrative diagram of ICP.

FIGURE 5. Illustrative diagram of OCP.

2). Tn is the number of ICH in one cycle
3). Tr, and Tc are the length and width of output window,

respectively
Thus, the number of PEs to carry out the batch computation

in one cycle is summarized as follows.

PEall = Tm × Tn × Tr × Tc × K2 (1)

A total of three possible parallel hardware arrangements to
carry out the above convolution computation are highlighted
as follows.
• Input Channel Parallel (ICP): As shown in Fig. 4, the
superscript of P stands for the number of channel, while
the subscript is the coordinate of the selected pixel. For
instance, ICP=4 in Fig. 4 indicates that there are 4 channels,
P0IM to P3IM , where each channel is for one pixel. They are
delivered to 4-channel kernel to carry out MAC operations
in parallel, and the outcome is written into the corresponding
one-channel one-pixel output feature map. The required least
hardware to carry out this ICP operation needs 4 input/kernel
buffers.
• Output Channel Parallel (OCP): Similarly, OCP=4 in Fig. 5
denotes there are 4 channels, P0OM to P3OM , needed to gen-
erate output feature map (OM). Certainly, the required least
hardware to carry out the MAC operations is 4 output/kernel
buffers.
•WindowParallel (WP) : Themajor difference ofWP vs. ICP
and OCP is that all the MAC operations are carried out in one
channel and multiple pixels, unlike the multiple channel and
one pixel in ICP and OCP. WP operations can be divided
into two types, namely Output Window Parallel (OWP) and
Kernel Window Parallel (KWP), depending on what the data
source is. As shown by Fig. 6(a), OWP selects 4 pixels in
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FIGURE 6. Illustrative diagram of WP (a) OWP; (b) KWP.

IM, P0OM (1,1) to P3OM (1,4), to multiply with P0OM (1,1) of the
kernel. The product is then written into the single channel
4 pixels in the OM. As for the KWP operation as shown in
Fig. 6, 3 pixels in one channel of IM, P0OM (1,1) to P

3
OM (1,3) are

multipliedwith the 3 pixels in the kernel, P0OM (1,1) to P
3
OM (1,3).

Then, the MAC result is written in the one channel and one
pixel in OM. Since all the WP operations are executed in one
channel, the hardware demand is significantly reduced at the
expense of a little bit longer delay.

B. CONTROLLER
The DLA controller relies on the Inter-Controller to generate
timing signals to drive the DMA and all the other hardware
modules. In other words, the controller is the main driver
of DLA to generate control signals for the operation of the
modules to be activated or not, including the finite-state
machine (FSM) state transfer, circuit switching, and power
consumption. The Inter-Controller has five states: 1. Idle (S0)
state, 2. Load (S1) state, 3. Calculate & Load (S2) state, 4.
Calculate (S3) state, and 5. Store (S4) state, as shown in
Fig. 7. Each state is assigned to carry out different modes by
generating corresponding signals.

C. PROCESSING ELEMENT (PE)
Most of the prior processing element (PE) was based on a
multi-resolution architecture, e.g., [25], which was for differ-
ent weight resolutions used in MAC operations. Though it
attained an advantage of diversity, the trade-off is long delay
caused by the cascaded stages. A very fatal issue, on top of the
delay, is that the overflow or underflow can not be detected
or fixed, if they appear during the MAC operations. Namely,
the error will be accumulated and passed downstream if it
happens.

FIGURE 7. State transition diagram of the DLA controller.

FIGURE 8. Proposed processing element (PE) with overflow and
underflow detector.

To resolve the long delay and inevitable overflow& under-
flow problems, a new processing element was presented as
shown in Fig. 8, where the proposed PE element will only
use 16-b resolution integer without loss of robustness for
underwater object recognition. It is composed of four 8 ×

8multipliers, one 16-b logical shifter, two 8-b logical shifters,
three 16-b adders, and an underflow/overflow detector. The
number of shifting steps are drastically reduced by such an
architecture, because the element no longer needs to generate
trailing bits for the inputs of the PE.Moreover, less number of
stages is needed compared to the prior designs, thus reducing
the delay. An underflow and an overflow detector are also
introduced to co-work with the intra-controller and send noti-
fication signals to the quantization module of the DLA. More
specifically, Overflow is detected when the output result is
over 16’h7FFF and underflow when it is 16’h8000.

D. PE ARRAY
Fig. 9 shows the PE array architecture composed of 8 rows
of output window parallel (OWP) and 32 columns of out-
put channel parallel (OCP). The outputs are generated and
passed to the left and a set of kernel values are shared by
the same column. To reduce the area and power consumption
of the array, the excitation functions, quantization, and batch
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FIGURE 9. PE array architecture.

TABLE 1. Comparison of bit length vs. hardware/timing cost.

normalization of the pixels are performed outside the array
prior to the output SRAM.

One important design consideration is how to determine
the trade-off between data bit length, accuracy, delay, and
possible timing violation. The bottom is when the bit length
is large intending to attain high accuracy, the penalty is
the increase of sign extended bits and the timing violation
caused by the generation of massive clock tree routes. Table 1
summarizes all the multiplier (MUL) designs for various
selections of bit lengths of input vectors and kernels. Appar-
ently, the 4 × 4 and 16 PEs are the better option when
considering the chip area, complexity, and throughout at the
same time.

E. MEMORY ARRANGEMENT FOR INPUT, KERNEL, AND
OUTPUT
The input and kernel SRAMs of the proposed DLA was
realized with 8 banks 2-port 8-b 1R1W SRAMs, respec-
tively. Double buffers are employed at the outputs thereof to
reduce the access time and increase the slew rate. The double
buffer design also attains another advantage, which is that the
resource can be allocated to other operations when it is not in
use. For instance, if only half of the bank is used, the other
half is allocated to load the required data. By contrast, the
output SRAM of the DLA uses 4 banks of 128-b dual-port
SRAMs (2R or 2W or 1R1W). The SRAMs for Input, Kernel,
and Output are shown in Fig. 10, respectively.

F. RESHAPE AND LINE BUFFER MODULES
Apparently, it is impossible to have unlimited hardware
resources to accommodate all the pictures or video frames

FIGURE 10. SRAM structures of (a) Input, (b) Kernel, and (c) Output.

FIGURE 11. Examples of padding given different stride steps and tiles.

FIGURE 12. Operation flow of re-organization of tile and pad.

FIGURE 13. Die photo and layout of the DLA.

at the same time for any processing, particularly the on-chip
memory buffers. Thus, the tile-based computation, as shown
in Fig. 11, is needed, where the entire picture frame is divided
into plural tiles. As the example highlights in Fig. 11, a
128 × 128 frame is divided into 16 16 × 16 tiles after stride
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FIGURE 14. Pre-layout simulations of the DLA (clock = 150 MHz).

FIGURE 15. Post-layout simulations of the DLA (clock = 150 MHz, worst corner).

2 operations. Notably, a title of 4 32 × 32 tiles will be
re-assembled by a Reshape module, which will be addressed
later in the text.

A Reshape module is used for the design to support
tile-based calculations as explained earlier. The Reshape
module re-organizes the tile-based data to support burst
transmission such that the transmission of multi-tile data
from one module to another is feasible, as shown in
Fig. 12. Notably, a padding step is needed that re-organizes
the data into 1D or 2D representation prior to the
transmission.

Lastly, the line buffer is composed of 16-b regis-
ters with 128-b SRAM (1R1W), which is used to push
8 groups of 16-b data during the convolution operation.
The line buffers are also used to hold the weights and
data values, which are repeatedly used during convolution
operations.

III. IMPLEMENTATION, CHIP MEASUREMENT, AND
EXPERIMENT IN WATER
The proposed digital logic accelerator is implemented using
TSMC 40-nm CMOS technology (TSMC 45 nm CMOS
LOGIC General Purpose Superb (40G) ELK Cu1P10M
0.9/2.5V). Fig. 13 shows the die photo and the layout of the
DLA chip, where the on-silicon size is 3460 × 3460 µm2

including 320 I/O and power pads. Notably, two scan chains
and BIST (using March algorithm) are included to enhance
the DLA’s reliability and testability, where the test coverage
was up to 98.35%.

A. DESIGN VERIFICATION BY PRE-LAYOUT VS.
POST-LAYOUT SIMULATIONS
Functional verification is required before any physical imple-
mentation. The signals and functions of the proposed DLA
are summarized as follows.
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FIGURE 16. Post-layout simulations of the DLA (Func[0], [1], [2]).

FIGURE 17. Post-layout simulations of the DLA (Func[2], [3], [4]).

• Func[0], [1], [2], [3], [4] : different phases of the controller
• PE_cen : activation signal of PE array
• irq : termination flag of the current computation
Func[0]: idle stage in which is the initialization of the system
Func[1]: load stage in which the data in DRAM are moved to
on-chip buffers
Func[2]: load and calculate stage in which certain tiles are
delivered to PE array, while other tiles are loaded at the same
time
Func[3]: calculate stage in which no data are found in DRAM
such that no load is needed and only the calculate is carried
out
Func[4]: store stage in which the processed outcome is output

Fig. 14 and 15 are the pre-layout simulation and the
post-layout simulation at the worst corner (namely SS),
respectively. They have been fully checked to be matched
when the same test-bench was used to examine the functional
correctness.

To further highlight the simulation details, Fig. 16 and 17
are the magnified post-layout timing waveforms. In the left
side of Fig. 16, after Reset is asserted, the DLA system is
activated and Axi_s_start is triggered to command the DLA
to be initialized and stayed in the standby mode. As soon as
Func[0] is changed to Func[1], the data in DRAM are copied
to the on-chip buffer. PE_cen and wdata are not asserted now,
since there is no calculation nor output.
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FIGURE 18. DLA chip measurement setup.

FIGURE 19. Input vectors of measurements.

Referring to the right side of Fig. 16, PE_cen is pulled high
when the state is changed to Func[2] such that the PE array
starts the computation. Notably, since the proposed DLA is
designed with dual buffers, the next batch of tiles are read
when the computation of PE array is proceeding.

The details of Func[2], [3], [4] are given in Fig. 17. The
left side of the said figure shows the scenarios when Func[2]
is changed to Func[3], where araddr[31:0] becomes 0 and
arleng[7:0] (the length for data transfer) is also 0. At this
moment, there is no new data to be fetched such that the
only operation is the PE array’s computation. wdata stays
unknown simultaneously.

By contrast, the right side of Fig. 17 shows that transi-
tion from Func[3] to Func[4]. Besides stopping PE array
operation by pulling down PE_cen, awvalid (signal to output
channels), awlen (length of output data), wvalid (valid flag
of data), awaddr (address to write data), and wdata (data to
be output) are all activated. As soon all data are written into
Output SRAM, irq is asserted to notify the entire process is
done.

B. CHIP MEASUREMENT
The performance measurement of the proposed DLA chip
was conducted in SOC Lab. of TSRI in Hsinchu, Taiwan,
using ADVANTEST 93000, as shown in Fig. 18. Fig. 19 is
the screenshot of the input vector waveform. Fig. 20 is the
measuredwaveform to prove the state transition fromFunc[0]
to Func[2], while Fig. 21 is those for transition from Func[2]
to Func[4]. These two measured figures match the prediction
given by the post-layout simulations, including initialization,
load, compute and store operations.

Lastly, Fig. 22 is the end of the entire processing cycle of
one picture frame. Notably, the pulse highlight in the right
side of the figure indicates the end signal. Fig. 23 is the

FIGURE 20. Measured waveforms for transition Func[0] to Func[2].

FIGURE 21. Measured waveforms for transition Func[2] to Func[4].

FIGURE 22. Measured waveform for transition Func[4] to the end of the
current processing cycle.

FIGURE 23. Shmoo plot of the proposed DLA.

Shmoo plot to show that when VDD = 0.9 V, the operation
clock = 133.33 MHz.

C. REAL-TIME SYSTEM FUNCTION VERIFICATION
To verify the DLA functionality in real time, the best way
is to make a comparison of two experiments: 1) from
CPU-based software simulations (using float32 computation,
assumed as the golden model), and 2) the DLA+FPGA
hardware testing. An algorithm based on YOLOv3-tiny was
implemented using the mentioned two approaches, which
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FIGURE 24. Comparison of CPU-based and DLA-based experiments for
underwater object recognition.

FIGURE 25. Recognition outcomes of SW-based FPGA vs. our DLA.

are compared to estimate the absolute error caused by our
DLA.

The comparison experiment was shown in Fig. 24, which
shows the identical recognition results except the delay and
frame rate. Fig. 25 demonstrates an apple-to-apple compari-
son between the software-based solution and our DLA. The
absolute error was found to be less than 1.4% as shown in
Fig. 26.

D. OPEN WATER TEST DEMONSTRATION
To physically test the proposed DLA in real underwater envi-
ronment, we then conducted open water experiments. An AI
box containing the proposed DLA, camera, battery-based
power supply, FPGA board, and other auxiliary circuits, was
installed on the front of an AUV as shown in Fig. 27. Before

FIGURE 26. Absolute error of the DLA approach vs. the golden model
(≤ 1.4%).

FIGURE 27. AUV equipped with an AI box containing the proposed DLA
and auxiliary circuits.

the open water experiments, the AI box had been trained off-
line to recognize more than 20 different underwater objects,
including lion fish, clown fish, shark, tire, glass bottle, turtle,
diver, etc. The mAP has been trained over 90% before the
experiment. All the weights and kernels were written into the
FPGA so that the edge inference using the proposed DLA can
be carried out independently in water. Fig. 28 shows the AUV
was driven 7 meters below the water surface, where it is about
1 mile from the coast line of Little Ryukyu, an island close to
Taiwan.

Besides the mentioned object recognition, the proposed
DLA installed in the AI box is utilized to carry out the
mission of object following in water. In our experiment, the
diver is selected to be the object to be followed by AUV,
since other objects in the data bank are either uncontrollable,
such as shark and fish, or stationary still, such as tires and
glass bottles. Fig. 29 and 30 demonstrate the diver following
mission screenshots. Particularly, Fig. 30 shows the scenario
where not only the AUV follows the diver, it also detects
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TABLE 2. Table of Comparison with previous State-of-the-Art.

FIGURE 28. AUV with the AI box was tested in the open sea of Little
Ryukyu, an island close to Taiwan.

FIGURE 29. AUX with the AI box to execute diver following mission.

the unknown big rock in the water and cruise away to avoid
possible collisions. These experiments surely prove that the
proposed design not only measurable on silicon, but also
usable in field applications.

E. PERFORMANCE COMPARISON AND ANALYSIS
Table 2 shows the comparison with many recent CNN/DNN
hardware accelerator works reported in top journals recently.
Notably, the supply voltage of our DLA is 0.9 V operating at

FIGURE 30. AUX with the AI box to execute diver following and object
avoidance.

133.33 MHz frequency. The on-silicon measurement results
of our DLA show a performance 54.61 GOPS at a power
consumption of 96.35 mW. Meanwhile, TOPS/W = 0.5668,
and GOPS/mm2

= 4.562, both are the best by far if normal-
ized with CMOS technology nodes and the operating clock
frequency. It also shows that [22] has the highest TOPS/W
and this is because its designs uses only 8-bit kernels thus
significantly decreases the overall area and hence power of
the chip.

Besides the comparison of recent DLAs on single dies,
we also made a comparison with a recent work imple-
menting YOLOv3-tiny on Nexys A7-100T FPGA [26]. Not
surprisingly, though the FPGA-based solution gives a better
performance in terms of GOPS, it pays very high price in
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terms of power consumption such that the overall power
efficiency is really poor. Two (2) FOMs (Figure-of-Merit)
is used to compare the different designs, the first one uses
the frequency, performance, and power while the second one
added the effect of the chip area. In short, the proposed
design shows an FOM1 value of 68.01 and FOM2 value of
5.68 which is the best among all DLAworks in Table 2. It also
shows the lowest carbon dioxide (CO2) equivalent energy
emission when used continuously for an entire year [27].
Lastly, the proposed DLA is the only one specially developed
for underwater AI applications.

IV. CONCLUSIONS AND FUTURE WORKS
A low-power and high-performance DLA using 40-nm
CMOS process is presented in this investigation. A new paral-
lel architecture based on processing element with underflow
and overflow detection is proposed to increase processing
speed and reduce computational error. Not only the normal-
ized area and power efficiencies of our design are better than
prior DLAs, the FOM also shows that our design is the best
so far even if the clock frequency is taken into account.

Future works for this investigation is to improve
the processing elements to perform faster computations.
An improved version of the machine learning is also under
development to further reduce the computational require-
ments of the DLA in order to further improve the power
efficiency of the design.
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